Докембрий. Архейский и Протерозойский Акроны.
Содержание:
↑ ДОКЕМБРИЙ. АРХЕЙСКИЙ И ПРОТЕРОЗОЙСКИЙ АКРОНЫ
(АКРОТЕМЫ) - AR + PR. ОСОБЕННОСТИ РАЗВИТИЯ ЗЕМЛИ В ДОКЕМБРИИ
Термин "докембрий" очень удобен тем, что охватывает весь период геологической истории Земли с тех пор, когда на ней начали происходить геологические процессы, и до начала кембрия. Этот отрезок времени в разных источниках оценивается по-разному, но расхождения небольшие. Начало докембрия - примерно 4,0 млрд. лет, окончание - 570 млн. лет. Иногда докембрий называли азоем ("безжизненный"), криптозоем ("скрытая жизнь"), подчеркивая этими названиями отсутствие жизни или развитие лишь простейших форм организмов в докембрийские эры. В настоящее время установлено, что оба эти названия оказываются неверными, поскольку низшие биологические формы появились практически одновременно с древнейшими проявлениями осадконакопления, а в позднем докембрии кроме низших существовали сравнительно высокоорганизованные формы. К рифейским и вендским отложениям в принципе можно применить биостратиграфический метод (при более совершенной его разработке). Этому способствовали многочисленные находки строматолитов в рифейских отложениях и бесскелетной фауны эдиакарского типа в венде. Таким образом, поздний протерозой нельзя уже относить и к криптозою, поскольку жизнь там существовала в явной, а не скрытой, микроскопической, форме.
Докембрийский промежуток времени составляет 7/8 истории Земли. В это время зародилась жизнь, радикально преобразовалась земная кора и заложились ее главные структуры, образовалась большая часть (свыше 60%) минеральных ресурсов. Однако изучен докембрий относительно слабо и тому есть объективные причины. Дело прежде всего в сильной дислоцированности докембрийских пород и высокой степени их метаморфизма.
Главный вид метаморфизма в докембрии - региональный, происходящий при высоких температурах и давлении. В большинстве случаев соблюдается следующая закономерность: чем старше породы, тем сильнее они метаморфизованы. Древнейшие породы настолько сильно метаморфизованы, что бывает весьма трудно, а порой и невозможно определить, за счет каких пород - осадочных или изверженных - они возникли. Широко распространенные в докембрийских образованиях процессы метасоматоза, гранитизации привели к формированию мигматитов - своеобразных пород полосчатой текстуры, а то и к полной метасоматической переработке исходных пород и превращению их в граниты. Эти процессы шли, как правило, с интенсивным привносом и выносом элементов и соединений горячими паро-водными растворами. Мигматиты и граниты слагают обширные гранитогнейсовые поля.
Другая отличительная особенность докембрийских пород - сильная их дислоцированность, наличие сложных складок многих порядков. Среди докембрийских образований по характеру тектоники можно выделить ряд структурных этажей, свидетельствующих о проявлении в докембрии целого ряда эпох складчатости. Исследователям приходится мириться с приблизительностью и неточностью расчленения и корреляции докембрийских образований по степени метаморфизма, глубине магматической и тектонической переработки, петрографическим особенностям пород, поскольку к докембрию невозможно в полной мере применить биостратиграфический метод. Радиалогические методы также имеют большие ограничения, связанные с сильным искажением датировок под влиянием упомянутых выше вторичных изменений, "омолаживающих" древнейшие породы. Наиболее подходящим для расчленения докембрия является геоисторический метод, применяемый совместно с радиогеохронологическим.
Своеобразие условий в докембрии привело к формированию пород, характерных только для этого времени. Примером могут служить джеспилиты - железистые кварциты, состоящие из полосок, сложенных преимущественно кварцитом и гематитом (либо магнетитом). Джеспилиты в основном приурочены к протерозойским толщам; образовались они при участии микроорганизмов.
Докембрий расчленен на крупные стратиграфические единицы, границы между которыми совпадают с проявлениями диастрофизма. Наиболее общее подразделение докембрия было осуществлено в конце XIX в. Американский геолог Дж.Дэна назвал в 1872 г. самые древние образования архейскими (греч. архэос - древний). Но с находками остатков бактерий и цианобионтов архей можно называть также археозой (греч. архэос - древний, зоэ - жизнь). Последний термин тоже принадлежит Дж.Дэну. Э.Эммонс и Д.Уолкотт в 1888 г. выделили верхнюю часть этих древнейших толщ, содержавшую остатки: жизнедеятельности организмов, под именем протерозойских (греч. протерос - первичный, зоэ - жизнь).
Эти подразделения долгое время существовали в ранге эр (групп), но после того, как выявилась их значительно большая продолжительность (около 2 млрд. лет каждое) по сравнению с эрами фанерозоя, потребовалось ввести новые, более крупные геохроны (стратоны). В ныне действующем стратиграфическом кодексе (1992) архей и протерозой имеют ранг акронов (акротем), делящихся каждый на два зона - ранний и поздний, которые в стратиграфической шкале соответствуют эонотемам - нижней и верхней. Нижне- и верхнеархейская эонотемы не имеют более дробных подразделений в международной стратиграфической шкале, а нижний протерозой делится на две эратемы - нижнюю и верхнюю. В России их называют нижний карелий и верхний карелий, поскольку наиболее представительные и хорошо изученные разрезы протерозоя находятся в Карелии. Верхний протерозой подразделяется на рифей и венд. Ранг рифея не совсем ясен, а венд - это период (система). Рифей делится на три эратемы (эры): нижнерифейскую, сред-нерифейскую и верхнерифейскую.
Жизнь зародилась в раннем архее и была первоначально представлена прокариотами - одноклеточными организмами, не имеющими ядра. К ним относятся бактерии и цианобионты (сине-зеленые водоросли). Последние сыграли решающую роль в формировании кислородной атмосферы. Как указывает М.Руттен (1973), содержание кислорода, продуцируемого неорганическим путем, не может подняться-выше 0,001 епГсовременного содержания в атмосфере. Это так называемый "уровень Юри". Фотосинтез содержащих хлорофилл цианобионтов примерно 3 млрд. лет назад стал настолько распространенным, что содержание кислорода в атмосфере росло быстрее, чем его потери при окислении минералов земной коры. Таким образом уровень Юри был преодолен. Но такая атмосфера считается еще бескислородной. Кислородная атмосфера должна содержать не менее 0,01 от современного уровня кислорода, принятого за 1 (или не менее 1%). Это - "уровень Пастера". К среднему рифею (1,3 млрд. лет назад) возникают первые грибы и водоросли. В начале позднего рифея (около 1 млрд. лет назад) появляются в весьма заметном количестве эукариоты - одно- и многоклеточные организмы, клетки которых содержат ядро. Вендский период - это время массового появления бесскелетных животных - своеобразной фауны эдиакарского типа.
В продолжение архейского акрона земная кора была повсеместно весьма подвижной и проницаемой. Дифференциация на платформы и геосинклинали отсутствовала. Лишь в конце раннего архея режим приблизился к геосинклинальному. Для пород архея с возрастом древнее 2,8 млрд. лет характерны основной и ультраосновной вулканизм и гранитизация. В это время земная кора повсеместно находилась в эвгеосинклинальных условиях (пангеосинклинальная стадия, по В.В.Белоусову). Архейские толщи часто образуют гранитогнейсовые купола - округлые или удлиненные в плане структуры, сложенные в ядре гранитами, а по периферии гранитогнейсами, мигматитами и кристаллическими сланцами. Формирование таких структур связывается с пластическим течением вещества.
В докембрии выделяется несколько крупных этапов геологического развития, разделенных глобальными диастрофическими циклами (эпохами складчатости, тектогенеза) первого порядка, которые имели место 3750-3500 (саамский), 2800-2600 (кеноранский, или беломорский), 2000-1900 (карельский), -1000 (гренвиллский) и 680-650 (катангский, или байкальский) млн. лет тому назад. Кроме того, выделяются диастрофические циклы второго и более низких порядков, о которых будет сказано ниже.
В результате саамского тектогенеза сформировались обширные складчатые овалы, сложенные комплексами "серых гнейсов", т.е. в большинстве своем плагиогнейсов тоналитового, трондьемитового и гранодиоритового состава, подстилающих породы зеленокаменных архейских поясов.
Кеноранская складчатость, проявившаяся 2,8 млрд. лет назад в Южной Африке, привела к образованию здесь самого древнего на планете относительно жесткого участка - протоплатформы. Беломорская складчатость, проявившаяся примерно в это же время, также обусловила отмирание протогеосинклинального режима на отдельных участках и превращение их в протоплатформы (Анабарский массив, Алданский щит и др.). Более поздние эпохи тектогенеза привели к увеличению площади протоплатформ. Таким образом, начиная с конца архея (2,8 млрд. лет назад) можно говорить о протоплатформенной стадии развития земной коры. Между протоплатформами существовали протогеосинклинали (предшествующие геосинклиналям), где господствовали хе же условия, что и в пангеосинклиналях.
Карельская складчатость в конце раннего протерозоя завершила новый цикл геосинклинального осадконакопления. Одним из ее следствий явилось отмирание геосинклинального режима на обширных площадях, образование первых крупных стабильных блоков - эпикарельских платформ, которые получились при слиянии протоплатформ после консолидации находившихся между ними протогеосинклиналей. В пределах этих территорий началось формирование типичного ллатформенного чехла.
Таким образом, к концу раннего протерозоя (завершение карельской складчатости) на значительной части Восточной и Северной Европы образовалась Восточно-Европейская платформа, на большей части Средней Сибири - Сибирская платформа, на севере Китая и Корейском полуострове - Китайско-Корейская и Таримская платформы, на юге Китая - Южно-Китайская платформа, на большей части полуострова Индостан - Индийская платформа, в центральной и западной частях Австралии - Австралийская платформа. В Африке и на Аравийском полуострове выделяются Северо-Африканская, Южно-Африканская и Аравийская платформы, на большей части Северной Америки - Северо-Американская платформа. Две платформы намечаются на большей части Южной Америки. Почти всю Антарктиду, за исключением ее западной части, занимает Антарктическая платформа. Наряду с платформами существовали геосинклинали и геосинклинальные пояса, отделявшие эпикарельские платформы друг от друга и отличавшиеся от протогеосинклиналей линейными структурами.
Произошедшая в конце рифея и в венде байкальская складчатость привела к окончательной консолидации древних платформ. С докембрия существуют Северо-Американская, Восточно-Европейская, Сибирская, Китайская, Южно-Американская, Африкано-Аравийская, Индийская, Австралийская, Антарктическая платформы. Предполагают, что последние пять южных платформ в палеозое составляли суперплатформу Гондвана.
Все время после байкальской складчатости можно назвать временем платформ и геосинклиналей. Геосинклинальные условия господствовали в пределах следующих участков. Между Восточно-Европейской, Сибирской и Китайской платформами располагался Урало-Монгольский подвижный (геосинклинальный) пояс. Между Северо-Американской и Восточно-Европейской платформами прослеживается Грампианская геосинклинальная область Северо-Атлантического подвижного пояса, Северо-Американскую платформу окаймляли с севера Иннуитская геосинклинальная область, с юго-востока Аппалачская геосинклиналь этого же пояса. Вокруг всей береговой части Тихого океана располагался громадный Тихоокеанский подвижный пояс с двумя ветвями - Западно- и Восточно-Тихоокеанской геосинклинальными областями. Между Гондваной и платформами Северного полушария располагался субширотный Средиземноморский подвижный пояс.
Среди докембрийских образований выделяются литолого-стратиграфические комплексы - ассоциации горных пород, отличающиеся литологическим своеобразием, отвечающие крупному этапу геологического развития территории и занимающие определенное стратиграфическое положение, отделяясь от смежных по разрезу комплексов структурным или значительным стратиграфическим несогласием. Комплекс - наиболее крупная единица местной стратиграфической шкалы; он объединяет ряд серий или свит и имеет собственное название, образованное от названия стратотипической местности, либо наиболее типичной серии, входящей в его состав. С помощью комплексов крупные стратиграфические подразделения докембрия в ранге эонотем и эратем получают более дробное расчленение.
В нижнем архее, согласно данным Л.И.Салопа (1982), выделяются следующие литолого-стратиграфические комплексы (снизу вверх): иенгрский, унгринский, федоровский, сутамский, слюдянский, исуанский (серия Исуа). В верхнем архее различают комплексы: коматиитовый, киватинский, тимискамингский, Модис.
В составе нижнекарельской эратемы выделяются шесть литостратиграфических комплексов (снизу вверх): доминион-рифский (тунгудско-надвоицкий), Витватерсранд, нижнеятулийский, вер-хнеятулийский (анимикийский), ладожский (трансваальский), вепский. В верхнекарельской эратеме, как и в более молодых образованиях, литостратиграфические комплексы не выделяются.
Докембрийские образования чрезвычайно богаты полезными ископаемыми. В докембрии сосредоточено свыше 70% запасов железа и хрома; 70% золота, урана, никеля; свыше 60% меди и марганца; 100% добычи мусковита и флогопита. Это обстоятельство определяет важное практическое значение изучения докембрия.
↑ АРХЕЙСКИЙ АКРОН (АРХЕЙСКАЯ АКРОТЁМА) - AR
Архейский акрон продолжался свыше 1,5 млрд. лет, хотя точно длительность его неизвестна и нижняя граница не установлена. Она определяется условно возрастом наиболее древних пород и может понизиться по мере получения новых данных, хотя вряд ли этот возраст, приближающийся сейчас к 4,2 млрд. лет, значительно изменится. Породы архея прослежены на щитах древних платформ. Возраст пород серии Исуа в Гренландии оценивается в 3.760-4.000 млн. лет (магнетитовые кварциты, тоналиты). Гранулито-гнейсы и чарнокиты канского комплекса Южно-Енисейского поднятия Сибирской платформы имеют возраст 4.100 млн. лет. По сообщению австралийских геологов на Международном геологическом конгрессе в Москве в 1984 г., гнейсы щита Йилгарн. Австралийской платформы имеют возраст 4.100-4.200 млрд. лет. Верхняя возрастная граница архейского акрона проводится на уровне 2.500-2.600 млн. лет.
По принятой в России стратиграфической шкале докембрия (табл. 1, цв. вкл.) архей делите» на две части в ранге эонотем - нижний и верхний архей, которым соответствуют ранне- и поздне-архейские зоны.
↑ РАННЕАРХЕЙСКИЙ ЭОН (НИЖНЕАРХЕЙСКАЯ ЭОНОТЕМА) - AR,
Общая характеристика
Возрастная граница между ранне- и позднеархейским зонами проводится на уровне 3.150 млн. лет. Самые древние образования иногда называют "катархей" (от греч. ката - внизу, термин Я.Седерхольма, 1893), хотя объем этого стратона не определен и понимается по-разному.
Нижнеархейские образования, слагающие значительные участки фундамента древних платформ, являются зачатками континентальной коры и представлены разнообразными глубоко метаморфизованными пара- и ортопородами. Наиболее древними из них являются так называемые "серые гнейсы". Это преимущественно гнейсы андезидацитового состава, а также амфиболиты, железистые кварциты и другие продукты метаморфизма как осадочных, так и магматических пород. Фации метаморфизма - гранулитовая, амфиболитовая.
Эти наиболее древние образования с возрастом, как правило, превышающим 3,5 млрд. лет, развиты на всех континентах. В Европе это Кольская серия Кольского п-ова, беломорская серия Карелии и др.; в Азии - алданская серия Алданского щита, анабарская серия Анабарского массива, канский комплекс Канского выступа, зерендинская серия Казахстана, индостанскип комплекс Индии и др.; в Африке - "древние гнейсы" Свазиленда, гнейсо-гранулитовый комплекс Зимбабве и др.; в Северной Америке - гнейсо-гранулитовые комплексы Канадского щита; в Южной Америке, Австралии, Антарктиде - древнейшие комплексы щитов.
Органический мир
О зарождении жизни и самых ранних этапах ее развития подробно говорилось в главе 5. По»-.видимому, уже ранее 3.500 млн. лет, в раннем архее, появились настоящие живые организмы -прокариоты (бактерии и цианобионты). Идентификация органических остатков в наиболее древних породах очень затруднена. В кремнистых сланцах группы Онвервахт надсерии Свазиленд (Южная Африка) и перекрывающей ее серии Фиг-Три с возрастом 3.500-3.100 млн. лет найдены микроорганизмы Eobacterium isolatum.
В породах серии Исуа в юго-западной Гренландии с возрастом около 3.800 млн. лет обнаружены изолированные палочки длиной 0,45-0,7 мкм и диаметром 0,18-0,32 мкм с двухслойными оболочками, нитеподобные образования, микроскопические шаровидные, дисковидные и многоугольные оболочки одноклеточных прокариот (цианобионтов). Это наиболее древние палеонтологические остатки. В первой половине архея прокариоты прошли сложный путь развития, так как уже в середине архея существовали два самостоятельных царства органического мира -бактерии и цианобионты (сине-зеленые водоросли). Эти первые обитатели Земли жили практически в бескислородной среде, населяя мелководные водоемы на глубинах, скорее всего, от 10 до 50-60 м, поскольку для защиты от губительного ультрафиолетового излучения Солнца требовался -слой воды толщиной не менее 10 м.
Структуры земной коры и породообразование
Согласно схеме Л.И.Салопа (1982), в архейском акроне выделяются шесть диастрофизмов: готхобский второго порядка (-4000 млн. лет), саамский первого порядка (3750-3500 млн. лет), бе-лингвийский, свазилендский, барбертонский второго-третьего порядков (в позднем архее) и кено-ранский (беломорский) первого порядка (2800-2600 млн. лет). Все эти циклы диастрофизма включали складчатые деформации, интенсивный и разнообразный магматизм, мигматизацию, гранитизацию и другие процессы.
По характеру тектонического режима Л.И.Салоп предложил называть ранний архей пермо-бильным эоном (лат. per - сплошь, mobilis - подвижность). По другим авторам, это нуклеарная или пангеосинклинальная стадия в истории Земли.
Наиболее характерными элементами структуры раннего архея являются обширные "складчатые овалы" размером до 600-800 км в поперечнике и расположенные между ними "межовальные поля" - сочетание куполов и мульд. В создании этих структурных форм основное значение имели вертикальные движения. К центральным частям овалов приурочены обширные поля гранитоидов. Характерна центростремительная вергенция складок на крыльях овалов. Последние расположены не упорядоченно, что свидетельствует об отсутствии направляющей рамы - кратонных блоков, платформ. Не меньшие по размерам структурные формы - гранитогнейсовые купола.
Тектонический режим раннего архея характеризуется следующими чертами:
- отсутствием дифференциации земной коры на платформы и геосинклинали;
- отсутствием контрастного рельефа и грубообломочных отложений;
- однообразием супракрустальных пород (лат. supra - сверху, вверху, crusta - кора) на всех
континентах - признак "Панталассы", общепланетарного океана;
- широкоим распространением анортозитов - признак спокойной тектонической обстановки;
только в конце раннего архея режим несколько приблизился к геосинклинальному;
- тонкой и достаточно пластичной первичной корой, из-за чего не могли возникать сводовые поднятия и глубинные разломы;
- внедрением огромных масс гранитоидов в результате саамского диастрофизма, которое привело к утолщению земной коры до 25-30 км (Салоп, 1982).
Наиболее распространенные супракрустальные породы - меланократовые амфиболовые, амфибол-пироксеновые и пироксеновые плагиогнейсы, кристаллические сланцы, амфиболиты. Это - сильно метаморфизованные основные либо ультраосновные лавы, возможно, туфы. В Западной Гренландии, на Кольском п-ове, на Алданском щите, в Южной Африке установлены коматииты -высокомагнезиальные вулканические ультрамафит-мафитовые породы. Метабазиты нередко гранитизированы, превращены в плагиогнейсы (мигматиты), эндербиты (натриевые чарнокиты), чарнокиты. С метавулканитами ассоциируют биотитовые, гранат-биотитовые, силлиманит- и кордие-ритсодержащие гнейсы.
Несомненно осадочными считаются мраморы кальцитового и доломитового состава, графит-содержащие гнейсы и кристаллические сланцы. Характерно преобразование пород в условиях гранулитовой и амфиболитовой фаций. Гранулитовая фация регионального метаморфизма является исключительной особенностью нижнего архея.
Лучше всего изучены нижнеархейские образования на Алданском щите. Супракрустальный комплекс щита - алданская серия - представлен наиболее полно из всех известных подразделений нижнего архея. Возраст серии - 3.800-4.000 млн. лет. Породы алданской серии представлены кварцитами, пироксеновыми и амфиболовыми кристаллическими сланцами, амфиболитами, гнейсами иенгрской подсерии мощностью более 3 км. Выше залегает тимптонская подсерия - гнейсы, амфиболиты с пачками мраморов и известково-силикатных пород. Мощность около 8 км. Еще выше - джелтулинская подсерия, сложенная гранат-биотитовыми, пироксеновыми гнейсами, гра-нулитами и мраморами. Мощность более 4 км. Общая мощность алданской серии порядка 15 км. Среди докембрийских отложений выделяют различные литостратиграфические комплексы, сложенные ассоциациями пород, отражающими специфику среды их образования. В нижнеархейских образованиях выделяется шесть литостратиграфических комплексов (Салоп, 1982):
1. Иенгрский метабазит-кварцитовый: основные кристаллические сланцы, амфиболиты
(метабазиты), горизонты кварцитов и высокоглиноземистых гнейсов (зверевская толща Станового
хребта, далдынская серия Анабарского поднятия, серия Раномена Мадагаскара).
2. Унгринский метабазитовый: меланократовые двупироксеновые и амфиболовые кристаллические сланцы, амфиболиты по основным и ультраосновным вулканитам, прослои гнейсов и силикатно-магнетитовых пород (унгринская свита Алданского щита, верхнеанабарская подсерия
Анабарского массива, канская серия Енисейского поднятия, в Северной Америке - нижняя часть гренвиллского комплекса; нижняя часть нижнеархейских комплексов Экваториальной, Западной и Северо-Западной Африки; в Австралии - нижние части гнейсо-гранулитовых комплексов).
3. Федоровский метабазит-карбонатный: основные пироксеновые кристаллические сланцы, амфиболиты (метабазиты) с подчиненными прослоями карбонатных пород (мраморов, известково-силикатных сланцев). Прослои гнейсов, кварцитов, магнетитовых пород. К этому комплексу приурочены древнейшие в истории Земли эвапориты (ангидритсодержащие мраморы, известковистые кристаллические сланцы Алданского щита, Канады, Бразилии), а также богатые фосфором породы. Распространен на Анабарском массиве, в Енисейском кряже, в Присаянье (верхняя частьшарыжалгайской серии), на Украинском щите (тетерево-бугская серия, белоцерковская свита), в Cеверной Америке (верхняя часть гренвиллского комплекса), в Африке и др.
4. Сутамский комплекс: тонкослоистые гранат-биотитовые гнейсы, грубослоистые или массивные лейкократовые гранатовые гранулиты, прослои различных гнейсов, метабазитов, мраморов, высокоглиноземистых гнейсов. Известен на Анабарском массиве, в Восточном Саяне, Становом хребте, Кольском п-ове, в Африке.
5. Слюдянский комплекс: карбонатные и силикатно-карбонатные породы и различные кристаллические парасланцы (гранат-биотитовые, силлиманит-кордиеритовые и др.). Карбонатов
здесь не менее 30%, а метабазиты имеют подчиненное значение. Слюдянская серия Южного Прибайкалья, бирюсинская и дербинская серии Восточного Саяна, ваханская серия Памира и др. По мраморам из бирюсинской серии получен возраст 3,7 млрд. лет.
6. Серия Исуа: амфиболиты, пара- и ортосланцы, джеспилиты, кислые метавулканиты, метаконгломераты. Мощность серии 2 км. В Гренландии породы серии залегают в виде дугообразной полосы среди обширного поля гнейсов Амитсок - тоналитовых очковых пород с темноцветными минералами гранулитовой и амфиболитовой фаций. Породы серии Исуа датируются 3.760 млн.лет; гнейсы Амитсок - 3.980 млн. лет, гранито-гнейсы Готхоб - 4.065 млн. лет.
Серия Исуа, вероятно, сформировалась между двумя периодами тектоно-магматической активизации. Перед отложением этой серии имел место готхобский диастрофизм (фаза складчатости) II порядка (4 млрд. лет), с которым связано формирование гнейсов Амитсок (гранулитовая фация). В конце формирования серии Исуа произошел саамский диастрофизм I порядка (3.750-3.500 млн. лет), завершивший саамскую эпоху тектогенеза.
Выдержанность состава супракрустальных толщ нижнего архея на огромных площадях заставляет предположить единообразные условия их образования.
Отсутствие каких-либо признаков областей размыва свидетельствует об отложении осадков и излиянии лав в огромном мелководном океане - "Панталасса". Отсутствие грубообломочных пород указывает на отсутствие расчлененного рельефа.
В федоровском комплексе впервые появляются карбонатные породы, что знаменует важный стратиграфический рубеж, связанный с уменьшением в составе атмосферы и гидросферы содержания СО2 и сильных кислот. После отложения четвертого - сутамского - комплекса содержание СО2 упало еще больше, так что пятый - слюдянский - комплекс оказался существенно карбонатным.
Железорудные толщи могли произойти за счет выноса железа при вулканических извержениях, а кремнезем (SiO2) находился в избытке в растворе. Графитистые породы нижнего архея (федоровский, слюдянский комплексы и др.) имеют, скорее всего, абиогенное происхождение, поскольку в то время еще не было достаточного количества биомассы для формирования столь большого количества графитосодержащих пород. Это же соображение относится и к фосфатоносным . породам.
Значительная часть нижнеархейских супракрустальных толщ сложена глубоко метаморфизо-ванными вулканитами основного и отчасти ультраосновного состава. Наличие кислых лав не доказано. Метабазиты иенгрского и унгринского комплексов отвечают толеитовым базальтам, федоровского комплекса - щелочным базальтам, а более молодых частей алданской серии - вулканитам толеитового и щелочно-базальтового рядов, с участием базальтов, нефелинитов. Таким образом, со временем наблюдается возрастание щелочности пород.
Метабазиты слюдянского комплекса близки к андезибазальтовой формации островных дуг и отчасти базальтам геосинклинальных формаций.
Для некоторых нижнеархейских комплексов характерно присутствие глубоко метаморфизо-ванных ультраосновных высокоглиноземистых пород - коматиитов (более широко развитых в верхнем архее).
Плутонические образования наиболее развиты в саамском цикле тектогенеза в интервале 3.750-3.500 млн. лет. Возможность применения актуалистического метода при геологической интерпретации пород нижнего архея сильно ограничена, так как генезис многих пород неясен. Например, в нижнем архее отсутствуют псефиты (кроме верхов серии Исуа). Кварциты ассоциируют с базитами и ульт-рабазитами, что в фанерозое не наблюдается. Своеобразные тектонические структурь» -гнейсовые овалы не имеют аналогов в более молодых толщах.
Физико-географические условия
Особенности метаосадочных пород нижнего архея указывают на существование горячей гидросферы. Изучение изотопного состава кремнистых пород, в частности отношений дейтерия к водороду и изотопов 18О/16О, зависящих от температуры, показало следующее распределение среднегодовой температуры (Салоп, 1982).
В раннем архее температура поверхности Земли была, вероятно, выше 70°С или даже выше 100°С. Такая температура поверхности могла быть обусловлена только парниковым эффектом, созданным мощной атмосферой. Напрашивается аналогия с современной атмосферой Венеры, температура поверхности которой 480°С, давление углекислой атмосферы около 90 бар.
Атмосфера и гидросфера являются в основном продуктами дегазации и отделения жидких и газообразных составляющих из мантии. Формирование первичной земной коры сопровождалось образованием первичной, существенно водородной, атмосферы, позднее рассеявшейся в космическом пространстве. Вторичная примитивная (первичная в геологическом смысле) атмосфера возникла только после снижения температуры, когда газы уже не могли преодолеть силу притяжения. В дальнейшем атмосфера менялась в зависимости от процессов вулканизма, седиментации, а затем и от фотосинтеза растений.
Состав примитивной атмосферы соответствовал составу газовых продуктов вулканических извержений (водяной пар, углекислота, азот, "кислые дымы" - НС1, HF, H2S, аммиак, метан).
Содержание воды в мантии Земли в три раза больше массы воды современных океанов. Источником этой воды явился процесс образования лав базальтового и андезитового состава. Углекислоты за геологическую историю отложилось в карбонатах в 10 тыс. раз больше, чем теперь содержится ее в атмосфере (а усвоенной растениями и погребенной в 1000 раз больше, чем в атмосфере).
Первичная атмосфера содержала около 99% СО2 (без учета воды). Давление должно было составлять около 70 бар, а с учетом растворения СО2 в гидросфере 50-60 бар. При таком давлении температура кипения воды должна быть 260-285°С.
Свободный кислород во вторичной (примитивной) атмосфере практически отсутствовал. Основной его источник - биогенный фотосинтез. Кислород, как указывает Л.И.Салоп, отсутствовал в этой атмосфере, судя по изотопному составу серы в осадочных породах, до рубежа примерно 2,3-2,4 млрд. лет (PR|). По данным М.Руттена (1973), около 3 млрд. лет назад была превышена точка Юри, когда содержание кислорода составляло 0,001 от современного, а к концу архея (2,5 млрд. лет) была достигнута точка Пастера, в которой содержание кислорода составляет 0,01 от современного. До этого уровня атмосфера еще считается бескислородной. Анализ газовых включений в хемогенных кварцитах иенгрской серии дал такие результаты: СО2 - 60%, H2S, SO,, NH3, HCI, HF около 35%, N2 + редкие газы 1-8%. В более молодых хемогенных кремнистых осадках содержание кислорода закономерно увеличивается: AR2- 5,5%, PR-PZ, - 12%, PZ2-KZ - 18%. Одновременно происходит снижение содержания СО2 от 42% в AR2 до современного в кайнозое.
Таким образом, атмосфера раннего архея была очень плотной, бескислородной, горячей и состояла в основном из паров воды, углекислоты и ряда других компонентов (характерна "кислые дымы"). Такая атмосфера обусловливала сильный парниковый эффект.
Гидросфера в раннем архее была резко углекислой, содержащей сильные кислоты, т.е. была агрессивной, заметно минерализованной и соленой. Об этом свидетельствуют и древние эвапори-ты (федоровский комплекс на Сибирской платформе, в Канаде, Бразилии). В результате взаимодействия с большим количеством щелочей и щелочных земель состав воды приблизился к нейтральному (рН около 7).
↑ ПОЗДНЕАРХЕЙСКИЙ ЭОН (ВЕРХНЕАРХЕЙСКАЯ ЭОНОТЕМА) - AR
Общая характеристика
Позднеархейский эон охватывает время 3.150-2.600 (по другим данным 2500) млн. лет. Образования верхнеархейской эонотемы резко отличаются от нижнеархейской, знаменуя собой начало нового крупного этапа истории Земли - платформенно-геосинклинального. Стратотип верхнего архея - надсе-рия Свазиленд (ЮАР, Свазиленд). Для супракрустального комплекса характерны осадочно-вулканоген-ные толщи, близкие к эвгёосинклинальному типу. Миогеосинклинальные и платформенные формации распространены пока незначительно. Породы метаморфизованы в условиях амфиболитовой и зеленос-ланцевой фаций, поэтому первичная природа распознается достаточно хорошо. Нередко встречаются конгломераты, характерны джеспилиты, локально развита гранитизация.
Верхнеархейские супракрустальные породы и прорывающие их интрузивы распространены широко на всех континентах. Это, например, лопский комплекс Карелии, лептитовая формация Швеции, тетеревская, конкско-верховцевская серии Украины, надсерия Свазиленд ЮАР, формация Шерри-крик США, комплекс Пилбара Австралии и др.
Органический мир
К позднему архею создались условия, более благоприятные для существования и размножения организмов: снизилась температура воды, уменьшилась ее кислотность и химическая агрессивность. В верхнеархейских породах обнаружены первые определимые органические остатки: фитолиты (строматолиты, онколиты) и микрофоссилии. Строматолиты представлены мелкими фестончатыми и куполовидными формами и пластовыми образованиями. Это, как уже указывалось выше, продукты жизнедеятельности цианобионтов. Микрофоссилии - это также цианобионты и бактерии. В кремнистых породах серии Фиг-Три (Южная Африка) встречены микроскопические образования, напоминающие одноклеточные водоросли и бактерии. Количество биомассы в сравнении с ранним археем значительно возросло, но она была представлена исключительно прокариотами, так как эукариоты еще не возникли. От более молодых аналогичных ископаемых позднеархейские прокариоты отличаются меньшим размером клеток.
Деятельность цианобионтов постепенно привела к увеличению количества кислорода в атмосфере и гидросфере. Около 3 млрд. лет назад была превышена точка Юри, т.е. содержание кислорода в атмосфере поднялось выше 0,001 от современного. С этим впоследствии будут связаны активизация развития и усложнение других групп организмов, а также изменение процессов осад-конакопления.
Структуры земной коры и породообразование
Во всех районах зеленокаменные породы верхнего архея развиты в виде узких, часто неправильных по форме участков, представляющих структуры геосинклинального типа, разделенные обширными полями глубоко метаморфизованных пород нижнего архея. Между верхнеархейскими и нижнепротерозойскими толщами почти повсеместно наблюдается резко выраженное несогласие.
Для верхнего архея характерны различные вулканиты с преобладанием основных: толеито-вые базальты, коматииты, диабазы, андезибазальты. Часто встречается шаровая отдельность. Из обломочных пород преобладают граувакки, аркозы, алевролиты, пелиты и конгломераты. Самые распространенные тектонические структуры - гнейсовые и гранито-гнейсовые купола, диаметром 10-40 (не более 100) км. Купола окаймляются зеленосланцевыми породами и образуют целые группы, слагающие протяженные "гранит-зеленокаменные пояса", располагающиеся между относительно стабильными массивами - протоплатформами.
Зеленокаменные пояса представляют собой, наиболее вероятно, обширные прогибы, осложненные разломами и возникшие в результате глобального растяжения земной коры. По мнению Л.И.Салопа, системы прогибов и разделяющих их поднятий следует рассматривать как древнейшие геосинклинальные области - протогеосинклинали.
Зеленокаменные пояса распределены неравномерно. Области развития нижнеархейских толщ, лишенные зеленокаменных поясов, вероятно, являются древнейшими более стабильными элементами земной коры, которые могут быть названы протоплатформами.
Наиболее полные и лучше всего изученные разрезы верхнего архея находятся в Южной Африке, Канаде и Западной Австралии.
Поле развития надсерии Свазиленд (ЮАР, Свазиленд) - стратотипа верхнего архея - находится в горном районе Барбертон и представляет собой в структурном отношении Свазилендский синклинорий.
По данным Д.Хантера, нижняя часть разреза представлена древним гнейсовидным комплексом, состоящим из пород амфиболитовой и гранулитовой фаций метаморфизма. Они сформированы задолго до накопления надсерии Свазиленд и встречаются в этой последней в виде галек конгломератов.
Породы надсерии Свазиленд характеризуются, в отличие от пород основания, низкими ступенями метаморфизма (зеленосланцевая фация) с хорошо различимыми первичными структурами. Снизу вверх в этой"надсерии выделяются три серии: Онвервахт, Фиг-Три иМодис.
Серия Онвервахт подразделяется на три формации:
Нижний Онвервахт: основные подушечные лавы и линзы ультрабазитов, тонкие прослои черных кремнистых пород, кислые туфы. Ультраосновные и основные породы богаты Mg и бедны А1 и К и выделены в особую группу коматиитов мощностью более 2 км.
Средний Онвервахт (формация реки Комати): подушечные базальты и ультраосновные лавы, полевошпат-порфировые интрузивы (3-4 км).
Верхний Онвервахт - циклическое повторение подушечных базальтов или андезитов, кислых лав и кремнистых пород (5 км).
Серия Фиг-Три (фиговое дерево) включает (снизу вверх):
- хемогенные осадки (полосчатые кремнистые, тальк-карбонатные, кварц-серицитовые породы);
- граувакки, глинистые сланцы, полосчатые кремнистые породы;
- граувакки, глинистые сланцы, железистые кварциты, туфы.
Общая мощность серии Фиг-Три более 2 км. Серия Модис лежит с несогласием и представлена полимиктовыми конгломератами, полевошпатовыми песчаниками, алевролитами, глинистыми сланцами (мощность 3,1 км).
Общая мощность надсерии Свазиленд до 16 км. После отложения пород серии Модис все толщи надсерии Свазиленд были смяты в складки, разбиты крутыми надвигами на чешуйчато и веерообразно расположенные пластины и интрудированы многочисленными телами гранитоидов, древнейшие из которых имеют возраст 3-3,4 млрд. лет.
Надсерия Свазиленд относится к древнейшим образованиям зеленокаменных синклинориев.
На Канадском щите в качестве парастратотипа верхнего архея рассматриваются осадочно-вулканогенные толщи провинции Сьюпериор (оз. Верхнее).
Они слагают зеленокаменные пояса - удлиненные изолированные участки синклинорного строения, в которых линейные, часто изоклинальные складки чередуются с куполовидными структурами. Зеленокаменные пояса разделены полями гранитоидов, гранито-гнейсов и гнейсов.
Зеленокаменные толщи обычно имеют трехчленное строение: внизу и вверху - обломочные породы, иногда вулканиты, в средней части преобладают вулканиты.
Все зеленокаменные толщи прорваны крупными массивами биотитовых и амфиболовых гранитов и гранодиоритов с возрастом 2.600-2.800 млн. лет. Эти интрузии связаны с беломорским (кеноранским) диастрофизмом.
На Балтийском щите образования верхнего архея лучше всего изучены в Карелии, на Кольском п-ове и на востоке Финляндии. В качестве регионального стратотипа принимается гимольс-кая серия развитая в Карелии вблизи границы с Финляндией (в Финляндии это серия Иломанти). Для этой серии характерно двучленное строение: внизу основные эффузивы, выше осадочные породы и кислые вулканиты.
Все верхнеархейские толщи Балтийского щита залегают трансгрессивно, иногда с конгломератами в основании, на породах нижнего архея, главным образом на серых гнейсах, и перекрываются с резким несогласием породами нижнего протерозоя.
Толщи верхнего архея прорваны большим количеством гранодиоритовых и микроклин-плагиоклазовых гранитных массивов с возрастом 2.600-2.800 млн. лет.
Корреляция верхнего архея Балтийского щита со стратотипом (ЮАР, Свазиленд): коматииты Финляндии отвечают нижней части серии Онвервахт. Нижние вулканогенные толщи сопоставляются с верхней частью серии Онвервахт. Верхние вулканогенно-терригенные толщи отвечают серии Фиг-Три. Самые верхние свиты гимольской серии (окуневская, кейвская) примерно соответствуют серии Модис.
Общая мощность верхнего архея Балтийского щита 4-8 км (в 2-4 раза меньше, чем в страто-типе - в Южной Африке). На Украинском щите верхний архей наиболее полно представлен в бассейне среднего течения Днепра, где развита конкско-верховцевская серия, залегающая несогласно на гнейсах нижнего архея. В основании серии присутствуют высокоглиноземистые или чистые кварциты. Выше залегают метабазиты, средние и кислые вулканиты, реже метаосадочные породы (мощность до 5 км). В средней части серии встречаются джеспилиты.
Породы серии залегают в узких, изогнутых в плане синклиналях, расположенных между куполами гнейсо-гранитов нижнего архея. Возраст гранитоидов, прорывающих зеленокаменные породы - 2.600-2.800 млн. лет.
Верхняя часть конкско-верховцевской серии приблизительно соответствует серии Фиг-Три. Отложения верхнего архея по своему составу в различных районах мира очень похожи друг на друга. Среди них, по данным Л.И.Салопа, выделяется четыре глобально выраженных литостра-тиграфических комплекса:
- коматиитовый (3.550-3.400 млн. лет);
- киватинский (3.400-3.200 млн. лет);
- тимискамингский (3.200-3.000 млн. лет);
- Модис (3.000-2.800 млн. лет).
НАПИСАТЬ КОММЕНТАРИЙ