Происхождение солнечный системы и планеты Земля. Гипотезы о проихождении Земли.
Содержание:
↑ ПРОИСХОЖДЕНИЕ СОЛНЕЧНОЙ СИСТЕМЫ И ПЛАНЕТЫ ЗЕМЛЯ.ГИПОТЕЗЫ О ПРОИСХОЖДЕНИИ ЗЕМЛИ
Земля - небольшая планета Солнечной системы (средний радиус 6371 км), третья от Солнца, одна из девяти планет, входящих в эту систему. История Земли тесно связана с происхождением и развитием Солнечной системы - одной из наиболее сложных научных проблем.
Солнечная система входит в крупную галактику Млечный Путь, располагаясь примерно в 2/3 от ее центра. Наша Галактика вместе со спутниковыми Большим и Малым Магеллановыми облаками, соседней галактикой Туманность Андромеды и рядом других образует местную группу галактик, которых во Вселенной насчитывается до 10 млрд.
Установлено, что галактики "разбегаются" друг от друга и в то же время в разные стороны от некоего центра. В связи с этим одной из самых вероятных сейчас считается гипотеза Большого взрыва, случившегося примерно 20 млрд. лет тому назад. В результате Вселенная начала центробежное движение, в ходе которого сформировалось вещество, находившееся первоначально в сверхплотном состоянии. Затем пошел ядерный синтез гелия, дейтерия и т.д. 18-19 млрд. лет назад началось образование галактик, 15-16 млрд. лет назад образовались первые звезды как результат сжатия гигантских скоплений водорода и гелия, их разогревания и начавшегося термоядерного процесса.
Образование Солнечной системы, как и самого Солнца, произошло значительно позже, около 4,6 млрд. лет назад. Такой возраст имеют самые старые каменные метеориты, а также лунные породы. Нет однозначного мнения о том, возникли ли Солнце и околосолнечная туманность одновременно, хотя большинство исследователей считает, что это именно так. Существуют гипотезы, предполагавшие отрыв вещества будущих планет от уже сформировавшегося Солнца благодаря воздействию постороннего объекта. Такая гипотеза впервые была выдвинута еще Ж.Бюффоном в 1749 г. Он считал возможным столкновение Солнца с кометой (приливная гипотеза). Эту гипотезу развили уже в XX в. Д.Джине и Г.Джефрис, полагавшие, что проходившая вблизи Солнца звезда вырвала своим гравитационным воздействием часть солнечного вещества, из которого и сформировалась туманность, породившая впоследствии планеты. Однако из-за малой вероятности такого катастрофического события и некоторых теоретических трудностей эта гипотеза была отвергнута.
Со времен немецкого философа И.Канта (1775) доминирующим является мнение о существовании первично холодной газово-пылевой туманности. Под воздействием гравитационных сил, когда более крупные частицы стали притягивать менее крупные, система пришла в движение, образовались сгустки, постепенно превратившиеся в Солнце и планеты.
Французский математик и астроном П.Лаплас (1797) развил и дополнил эту гипотезу, дал ей математическое обоснование. Известно, что все планеты Солнечной системы движутся вокруг Солнца почти в одной плоскости, в одном направлении, по орбитам, близким к круговым. Вокруг оси они также вращаются в одном направлении с Солнцем, за редким исключением (Венера, Уран, некоторые спутники планет-гигантов). П.Лаплас объяснял образование планет постепенным сжатием раскаленной газово-пылевой туманности, в результате которого скорость ее вращения увеличивалась и под действием самогравитации центробежные силы приводили к выбросу колец вещества в экваториальной плоскости. Эти концентрические кольца продолжали вращаться, а вследствие неравномерного распределения материи в них возникали сгущения - зародыши планет. Окончательное формирование планет происходило при остывании газовых сгустков. Гипотеза Канта - Лапласа получила широкое признание, потому что впервые объяснила происхождение Солнечной системы эволюционным путем с научных, строго математических позиций, используя закон всемирного тяготения И.Ньютона.
Современное представление об образовании Солнечной системы, хотя и базируется на основном постулате гипотезы Канта - Лапласа о первоначальной газово-пылевой туманности, коренным образом видоизменилось. Вклад в его формирование внесли многие ученые, в том числе наши соотечественники О.Ю.Шмидт, В.А.Амбарцумян, В.Г.Фесенков и др. Медленно вращающееся газовое облако существовало в относительном равновесии с окружающей средой десятки миллионов лет. Скорее всего, взрыв близкой сверхновой звезды своей ударной волной мог вызвать коллапс этого облака. Началось более быстрое вращение и сжатие облака, уплотнение центрального ядра - будущего Солнца. Возникшие при этом электромагнитные поля своими закрученными магнитными силовыми линиями заставили периферические части уже уплощенного облака вращаться гораздо быстрее, чем центральное ядро. Вероятно, этим объясняется распределение момента количества движения, обратно пропорциональное массе Солнца с одной стороны и всех остальных тел Солнечной системы - с другой (для планет - 1/700 массы Солнца и 98% момента количества движения).
Плотное центральное непрозрачное ядро постепенно разогревалось, становилось светящимся объектом. В околосолнечной туманности, поддерживаемой вращением, происходила конденсация вещества. Все больше пылевых частиц накапливались в плоскости эклиптики, соединяясь путем неупругого соударения (аккреции) в гравитационно-связанные комки - планетезимали, зародыши планет. Многочисленные кратеры, следы заключительной фазы формирования планет - метеоритной бомбардировки - видны на Луне, Меркурии и других планетах, лишенных атмосферы. Межпланетное пространство почти очистилось от мелких частиц.
Поблизости от молодого Солнца из-за высокой температуры происходило испарение легких веществ, оттеснявшихся к периферии. Сохранялись только жаропрочные металлические и каменистые частицы, образовавшие плотные и мелкие внутренние планеты - Меркурий, Венеру, Землю и Марс. Во внешних областях Солнечной системы с относительно низкими температурами концентрировались громадные массы легких веществ - водорода, гелия, аммиака, метана и др. Здесь сформировались планеты-гиганты - Юпитер, Сатурн, Уран и Нептун. Плутон, самая маленькая планета с сильно вытянутой и наклоненной орбитой, первоначально был, скорее всего, спутником Нептуна, отделившимся в результате катаклизма. Подобные процессы формирования планетных тел из планетезималей повторились при образовании спутников планет. Астероиды и кометы представляют собой оставшиеся первичные частицы, не вошедшие в состав планет (как и кольца Сатурна). Описанные выше процессы произошли сравнительно быстро, примерно за 100 млн. лет, то есть 4,7-4,6 млрд. лет тому назад.
ЛУННАЯ СТАДИЯ РАЗВИТИЯ ЗЕМЛИ
Планетезимали, образовавшие Землю, под влиянием столкновений друг с другом и гравитационных сил расплавлялись, сформировав горячее ядро. Температура в нем поддерживалась и возрастала благодаря радиоактивному распаду тяжелых изотопов, многие из которых сейчас уже прекратили свое существование. На ранних стадиях, скорее всего, наблюдалось полное расплавление Протоземли, благодаря которому произошла гравитационная дифференциация вещества. Тяжелые элементы, преимущественно железо, никель и другие, стягивались к центру, образовав массивное ядро, до сих пор пребывающее в жидком состоянии при температуре примерно 4000° Кальций, кремний, магний и другие более легкие элементы сформировали мантию, самая верхняя часть которой - "шлаковая корочка" - составляет земную кору. Мощность ее настолько мала относительно других геосфер, что сравнима с толщиной почтовой марки, наклеенной на футбольный мяч.
Существует также гипотеза гетерогенной аккреции (Э.В.Соботович, А.П.Виноградов, А.Рин-гвуд и др.), согласно которой дифференциация вещества шла параллельно с аккрецией планетези-малей, то есть образующиеся в результате конденсации газово-пылевой туманности при понижении температуры железные планетезимали сразу формировали ядро Земли, а позже за ними следовали каменные частицы алюмосиликатного состава, формировавшие мантию.
В расплавленном ядре, как и в мантии, где тоже имеются обширные участки находящегося в жидкой среде вещества, постоянно возникают конвективные потоки, связанные с перераспределением плотности. Подобные токи во внешней мантии сказываются и на тонкой корочке земной коры, растрескивая ее, проплавляя, растаскивая осколки в разные стороны.
Первые примерно полмиллиарда лет, прошедшие со времени формирования Земли до образования первичных горных пород (-4,5-4,0 млрд. лет), иногда называют лунной стадией. Представления о ней могут основываться, пожалуй, только на сравнении с Луной, где благодаря отсутствию атмосферы сохранились следы этой самой ранней стадии развития, общей для обеих планет. В это время во внешних оболочках Земли должно было накопиться достаточно большое количество радиоактивных элементов, что привело к разогреванию протокоры. Продолжающиеся интенсивные столкновения с более мелкими планетезималями - "метеоритная бомбардировка" -могли привести к взламыванию тонкой внешней оболочки и появлению обширных "озер" и даже "морей" расплавленной магмы (скорее всего базальтового состава), в особенности на ранних этапах лунной стадии. Покрытая кратерами разных размеров поверхность Земли сильно напоминала современную поверхность Луны, тем более что атмосфера еще не была окончательно сформирована.
На тепловой режим Земли влияли такие процессы, как радиоактивный распад, продолжающаяся гравитационная дифференциация, а также приливно-отливные взаимодействия в системе Земля - Луна.
Освобождающиеся путем дегазации мантии в ходе магматических процессов летучие элементы - газы и водяной пар - образовали атмосферу Земли. Первоначальная атмосфера была весьма горячая (несколько сотен градусов), плотная и насыщенная водяным паром, углекислым газом» аммиаком, метаном; в ней практически отсутствовал свободный кислород. Очень похожа на прежнюю атмосферу Земли современная атмосфера Венеры. Вода в такой атмосфере могла существовать лишь в газообразной фазе, а жидкая начала образовываться только при достаточном для этого остывании атмосферы и земной поверхности ниже 100°С. Началось сгущение водяных паров, и этот первичный ливень длился многие тысячи лет. В результате сформировалась гидросфера, началось разрушение горных пород под действием воды, стали образовываться осадочные породы. Эти события и завершили догеологический этап, этап формирования Земли как планеты. С этого времени стало возможным расшифровывать историю Земли, опираясь на геологические документы. Начался архейский акрон (примерно 4,0 млрд. лет назад), сменившийся протерозойским акроном (2,5-2,6 млрд. лет) в развитии земной коры.
↑ ГЛАВНЫЕ СТРУКТУРНЫЕ ЭЛЕМЕНТЫ ЗЕМНОЙ КОРЫ
Земная кора по латерали подразделяется на континентальную и океаническую; в зонах перехода от континента к океану существует кора переходного (промежуточного) типа. Оба главных типа коры имеют принципиально различное строение. В разрезе континентальной коры различаются три геофизических "слоя" (сверху вниз): 1. "Осадочный" - неконсолидированная толща, горизонтально или полого залегающие неме-таморфизованные осадочные и вулканогенные породы, в основном фанерозойского, а местами и позднепротерозойского возраста. Скорости прохождения продольных сейсмических волн от 2 до 5 км/с. Плотность пород 2,23-2,65 г/см3. Мощность слоя от 0 до 5-10 км, местами до 15-25 км. На 40% рассматриваемой территории (континентальной коры) этот слой отсутствует.
"Гранитный" или гранитно-метаморфический слой (в некоторых работах прежних лет его еще называют "сиалическим" по главным составляющим химическим элементам: Si, A1). Название "гранитный" слой достаточно условное, поскольку он состоит не целиком из гранита, а из различных кислых и средних магматических, а также метаморфических пород разного состава. Но все-таки наиболее характерные породы здесь - гранитоиды. Скорость сейсмических волн в этом слое составляет 5,6-6,3 км/с, плотность пород 2,65-2,75 г/см3. Толщина гранитного слоя меняется, подчиняясь определенным закономерностям строения тех или иных структурных элементов. Наибольшей толщины гранитный слой достигает под современными горными сооружениями, возникшими на месте существовавших в прежние геологические периоды бассейнов осадконакопления, заполненных мощными толщами осадков, а затем испытавших пликативные и дизъюнктивные дислокации и общее поднятие. Это складчатые, или орогенные, зоны, являющиеся результатом заключительных этапов развития геосинклиналей, понятие о которых будет дано ниже. Примерами таких зон могут служить наиболее высокие горные хребты современности: Гималаи, Анды, Кавказ и др. Таким образом, под складчатыми сооружениями наблюдается наибольшее утолщение земной коры, в основном за счет гранитного слоя, образуя своеобразные "корни". В составе океанической коры гранитный слой отсутствует.
"Базальтовый" слой расположен ниже гранитного и, в отличие от него, является сплошным, то есть присутствует и под континентами, и под океанами. Базальтовый слой назван так по преобладающей породе - базальту (синонимом является устаревший термин "симатическая", или "симическая", оболочка, по преобладанию элементов Si и Mg). Базальт здесь тоже не единственная порода; самые нижние участки по составу соответствуют базито-гранулитам, эклогитам. Скорость распространения сейсмических волн в этом слое возрастает с глубиной от 6,6 до 7,2 км/с, плотность пород 2,90-2,95 г/см3. Мощность базальтового слоя под океанами в среднем 10 км. Ниже этого слоя как под континентами, так и под океанами, за разделом Мохоровичича, начинается мантия. Средняя мощность континентальной коры 35 км, максимальная под горными сооружениями
- до 70-75 км. Мощность океанической коры составляет 5-15 км.
↑ ОСНОВНЫЕ СТРУКТУРНЫЕ ЭЛЕМЕНТЫ КОНТИНЕНТАЛЬНОЙ КОРЫ
Орогенные области (складчатые пояса) и платформы представляют главнейшие элементы современной структуры континентов. Они сформировались в результате длительного геологического развития соответствующих участков земной коры, начавшегося с заложения геосинклинальных поясов. Для складчатых поясов характерны линейность их контуров, громадная мощность накопившихся отложений (до 15-25 км), выдержанность состава и мощности этих отложений по простиранию складчатой области, наличие своеобразных формаций: флишевой, молассовой и др.; интенсивный эффузивный и интрузивный магматизм (особенно - гранитные интрузии в форме батолитов); интенсивная складчатость, обилие разломов, в том числе надвигов, указывающих на господство процессов сжатия; для докембрийских складчатых областей - сильный региональный метаморфизм. Складчатые пояса возникли на месте тектонически активных геосинклинальных поясов,
ПОНЯТИЕ О ГЕОСИНКЛИНАЛЯХ
Геосинклиналь является важнейшим понятием геотектоники. Представления, составившие основу учения о геосинклиналях, были высказаны в 1857-1859 гг. американским геологом Дж.Холлом, а сам этот термин был введён в науку американским ученым Дж.Дэна в 1873 году. В первоначальном понимании, геосинклинали - это сравнительно узкие, протяженные, подвижные участки земной коры, вытянутые по краям платформ или между платформами и характеризующиеся на первом этапе значительным растяжением, погружением земной коры и мощным осадкона-коплением; на втором этапе (гораздо более кратковременном) - преобладанием сжатия, складчатостью, разнообразной магматической деятельностью и поднятием вначале срединных участков, а затем и всей области с образованием горной страны. Эти процессы сопровождаются складчатыми и разрывными деформациями, а также метаморфизмом пород. В.Е.Хаин (1973) дает такое определение геосинклинали: "геосинклинали (геосинклинальные пояса) это зоны высокой подвижности, значительной расчлененности и повышенной проницаемости земной коры, характеризующиеся на ранних этапах своего развития преобладанием интенсивных погружений, а на заключительных - интенсивных поднятий, сопровождаемых складчато-надвиговыми деформациями ". По Д.В.Наливкину, "геосинклиналь - это область накопления осадков, впоследствии превращающихся в складчатые горы".
Крупнейшие, глобальной протяженности участки земной коры геосинклинального строения называются геосинклинальными (подвижными) поясами; соподчиненные крупные подразделения - геосинклинальными областями, а входящие в их состав более мелкие участки, отличающиеся некоторыми особенностями своего строения и развития, представляют собственно геосинклинали.
По В.Е.Хаину, геосинклинальный пояс - подвижный и проницаемый тектонический элемент литосферы, для которого характерны наборы определенных литологических формаций, закономерная направленность магматических явлений, интенсивная дислоцированность и часто глубокий метаморфизм осадков и вулканитов. В современном понимании "геосинклинальный пояс - это один из типов подвижных поясов Земли, возникающий на границах крупных литосферных плит (океанических и континентальных) или в результате рифтообразования и расщепления континентальных плит; развивается соответственно на океанической и (или) утоненной и переработанной континентальной коре; длительно служит местом интенсивного накопления осадочных и вулканических толщ в морских, часто глубоководных, затем островодужных и мелководных условиях. В конечном счете, геосинклинальный пояс испытывает интенсивные тектонические деформации, региональный метаморфизм и гранитизацию с превращением в складчато-надвиговые горные сооружения с мощной континентальной корой, разделенные межгорными и окаймленные предгорными (краевыми, передовыми) прогибами" (Горная энциклопедия, том 1, 1984, с. 555). Ремонт ноутбуков по самым низким ценам на сайте
Процессы поднятия земной коры, внедрения крупных масс кислых интрузий наиболее интенсивно проявляются в центральной части геосинклинали, которую Г.Штилле назвал эвгеосинклина-лью. По краям геосинклинальной области расположены миогеосинклинали, содержагцие гораздо меньше эффузивных толщ, а также интрузивных массивов и сложенные в целом более молодыми породами.
Геосинклиналь переживает в своем развитии несколько стадий. По Э.Краусу, В.В.Белоусову и В.Е.Хаину, различаются два этапа развития геосинклинали: собственно геосинклинальный и орогенный. В первом, собственно геосинклинальном, этапе две стадии: 1) начального погружения и 2) предорогенная. Во втором этапе также две стадии: 3) раннеорогенная и 4) собственно орогенная.
Первый этап, согласно взглядам В.В.Белоусова (1962), начинается с заложения на континентальной или океанической коре ряда обширных частных прогибов, которые вскоре расчлененяют-ся на несколько более узких интрагеосинклиналей и интрагеоантиклиналей (лат. "интра" - внутри) - волновых прогибов, сохраняющихся в течение всего цикла развития геосинклинали. В течение первого этапа преобладают опускания. Это выражается в том, что интрагеосинклинали постепенно и неравномерно расширяются за счет разделяющих их интрагеоантиклиналей, а на периферии геосинклинали - за счет края соседней платформы.
Первая стадия - растяжения земной коры и начального погружения. Геосинклинальная (интрагеосинклинальная) область погружается по ступенеобразным разломам на глубину до десяти или более километров. Погружение сопровождается формированием нижней терригенной формации', эффузивным магматизмом (офиолитовая, спилито-кератофировая и диабазовая формации), который представляет из себя проявление начального вулканизма в эвгеосинклиналях. Часто спилито-кератофировая формация сопровождается кремнистыми породами яшмовой формации (радиоляриты, диатомиты и др.). В миогеосинклиналях в это время происходит накопление мощных толщ морских песчано-глинистых осадков (сланцево-граувакковая и аспидная формации). На окраине прилегающей платформенной суши аспидная формация нередко замещается па-ралической угленосной формацией.
Снос материала осуществляется с окружающих возвышенных участков. Мощность осадочных пород может достигать 5-10 и более километров. Таким образом, процессы прогибания и накопления осадков уравновешиваются. Вторая стадия - предорогенная. При переходе от первой стадии ко второй происходит перераспределение зон поднятия и опускания. Центрами такого перераспределения являются интрагеосинклинали.
В дальнейшем наблюдается постепенный рост и расширение центрального поднятия, и одновременно с этим происходит смещение наружу краевых прогибов, которые, раздвигаясь, как бы накатываются на соседние интрагеоантиклинали, постепенно с краев втягивая их в опускание. Происходит частная инверсия, или частное обращение, - превращение частного прогиба (интрагеосинклинали) в складчатое центральное поднятие. На месте бывших интрагеоантиклиналей располагаются новые прогибы, являющиеся результатом смещения наружу краевых прогибов: два краевых прогиба, двигавшиеся на одну и ту же интрагеоан-тиклиналь с двух сторон, встречаются, сливаются и превращаются в единый межгорный прогиб. На периферии геосинклинали краевой прогиб "накатывается" на край платформы и превращается в так называемый передовой прогиб.
В рельефе центральные поднятия выражены архипелагами островов, островными дугами, разделенными более или менее глубокими морями-проливами. Море, частично вытесненное из геосинклинали, трансгрессирует на платформу, прежде всего ее перикратонные прогибы, и срединные массивы. Появляются пликативные дислокации, внедряются первые интрузии. Среди осадков типичны тонкоритмичные терригенно-карбонатные отложения флишевой формации. Отличительную особенность этой формации составляет тонкая и правильная ритмичность ее сложения с преобладанием пелитовых пород (глины, аргиллиты, мергели, пелитоморфные известняки) и обязательным присутствием алевролитов или песчаников, а иногда и более грубообломочных пород. Флишевая формация может встречаться как в мио-, так и в эвгеосинклиналях, однако в последних она появляется значительно раньше. Среди магматических формаций на смену спили-то-кератофировой приходят породы порфиритовой (андезитовой) формации. Трещинный вулканизм в значительной степени замещается центральным. Преобладают по-прежнему подводные излияния, но временами вулканические постройки поднимаются над уровнем моря, образуя острова и островные дуги. Трансгрессия моря приводит к отдалению берегов материковой суши от геосинклинального бассейна и резкому уменьшению количества обломочного материала. Следствием этого является широкое распространение карбонатных пород известняковой формации, развитой в краевых (миогеосинклинальных) частях. Разновидностью ее является рифогенная субформация. В завершение этой стадии происходит широкомасштабное внедрение гранитоидных батолитов (гранитоидная формация) в среднюю часть геосинклинали, сопровождающееся общим ее возды-манием или общей инверсией.
Второй - орогенный - этап характеризуется преобладанием горизонтальных и импульсивных восходящих вертикальных движений, приводящих к формированию горноскладчатых (орогенных) зон. В составе этапа выделяют раннеорогенную и собственно орогенную стадии.
Третья стадия - раннеорогенная - отличается сокращением областей аккумуляции осадков в геосинклинали за счет разрастания поднятий. Воздымание продолжается, но осадки во впадинах исключительно терригенные (нижняя молассовая формация) - глины, алевролиты, песчаники. Наряду с морской нижней молассой, отлагавшейся в наиболее погруженных участках раннеоро-генных прогибов, на других их участках (эвгеосинклинальных), вследствие нарастания поднятий, утрачивающих связь с открытым морем, происходит образование лагунных нижних моласс. В зависимости от климатических условий лагунные молассы бывают двух разновидностей: в гумид-ных зонах угленосные (как паралические, так и лимнические), в аридных - соленосные. Морской нижней молассе нередко подчинены крупные залежи нефти и газа (Предкавказье). Происходят интенсивные пликативные дислокации. Эффузивный вулканизм ослабевает и выражен локальными наземными излияниями щелочного состава; продолжается образование гранитоидных интрузий. Поднятие с внутренних частей разрастается к периферии. Возникают межгорные прогибы, море мелеет и также оттесняется к краям. В межгорных прогибах образуется верхняя молассовая формация, существенно континентальная (в отличие от нижней молассовой формации), с преобладанием мощных толщ конгломератов, которые могут чередоваться с песчаниками, песчанистыми глинами. Эти песчаники являются прекрасными коллекторами нефти и газа. Воздымание горного сооружения сопровождается раскалыванием его сводовой части и интенсивным проявлением конечного вулканизма порфировой формации, отличающейся значительным разнообразием состава - от базальтов и андезибазальтов через андезиты, дациты до риолитов и трахитов. В эвгеосинклиналях наблюдается оживление интрузивной деятельности (формация кислых и щелочных гранитоидов). Происходит общее сводовое поднятие всей области, горообразование. По краям поднятий формируются предгорные прогибы, в которые может проникать мелкое море. На поднятых участках образуются высокогорные сводообразные плато (Тибет, восточный Памир). Геосинклиналь переходит в складчатую зону. Слои осадочных пород интенсивно дислоцированы, магматическая деятельность проявляется во всех формах. Рельеф контрастен (Гималаи, Анды, Альпы, Кавказ и т.п.). Мощность слагающих пород достигает нескольких километров (в Альпах мезозойские отложения имеют мощность около 8 км, на Кавказе юрские отложения достигают 10 км); преобладают морские фации.
Итак, в результате последовательной смены различных стадий на месте геосинклинали возникают горноскладчатые сооружения, выраженные в рельефе горными хребтами, разделенными межгорными впадинами. Такова идеальная схема развития геосинклинали - в соответствие с ней происходило развитие Центрального Казахстана, Урала, Кавказа, Альп, Копет-Дага, Памира и т.д. Конечным итогом геосинклинального этапа является формирование континентальной коры с базальтовым, гранитным и осадочным слоями.
СКЛАДЧАТЫЕ ОБЛАСТИ (ОРОГЕНЫ)
В первоначальном понимании ороген - это геосинклиналь на завершающем этапе своего развития. В последние годы понимание этого термина расширилось. К орогенам стали относить любые горные области как на континентах, так и на дне океанов. Это требует выделения орогенов в самостоятельный класс структур литосферы.
Геологическая природа орогенов различна, но общими являются относительно высокая тектоническая подвижность и расчлененный высокогорный рельеф.Отрицательными формами орогенных областей являются межгорные и предгорные впадины, представленные двумя разновидностями: крупными изометричными, часто овальными впадинами - наложенными мульдами - и узкими унаследованными синклинориями, заполненными молассой. Впадины орогенных областей, расположенные перед фронтом горно-складчатых сооруженй вдоль границы со смежной платформой, называют предгорными прогибами. В роли положительных структур орогенных областей выступают горные поднятия, разделяющие молассовые межгорные впадины. Внутренняя структура горных поднятий соответствует понятию мегантиклинория, или горст-мегантиклинория. Мегантиклинорий состоит из нескольких антиклинориев, которые имеют в целом антиклинальное строение и осложнены складками многих порядков. В ядре залегают более древние породы, чем на крыльях. В пределах мегантиклинориев нередко выделяются многочисленные мелкие грабены, отдельные горсты, а также пологие вулканоплутонические проса-дочные прогибы. Покровы лав образуют своеобразные вулканические "щиты ", сплошным панцирем перекрывающие горные поднятия. В отличие от антиклинориев в синклинориях выражена в целом синклинальная структура и в ядре залегают более молодые породы, чем на крыльях. Совокуцнасть синклинориев называется мегасинклинорием.В орогенных областях важная роль принадлежит глубинным разломам - крупным разрывным нарушениям, нередко достигающим верхней мантии. Особый тип структур составляют зоны офиолитового меланжа, рассматриваемые в качестве "рубцов", возникших на месте замкнувшихся крупных прогибов с океанической корой, а также вдоль границ интрагеосинклиналей и интрагеоантиклиналей. Формируются в срединно-океани-ческих хребтах, незрелых островных дугах, задуговых бассейнах. Реликты древней океанической коры в офиолитовых зонах выведены на поверхность в виде "пестрой смеси" пород мантии, базальтового слоя и глубоководных океанических осадков. Офиолитовая ассоциация включает ультраосновные, основные магматические, а также в меньшем количестве осадочные породы. Разрез офиолитов снизу вверх представляется следующим (Борукаев, 1999): 1) гарцбургиты, лерцолиты, дуниты, выше пироксеновые габбро и амфиболиты; 2) пироксениты, полосчатые габбро; 3) диабазовые параллельные дайки, выше толеитовые базальтовые пиллоу-лавы; 4) кремнистые (в меньшем количестве карбонатные) осадки. |
Многие палеозойские и более древние складчатые области в течение мезозоя испытали глубокую денудацию и были пенепленизированы. Однако на неотектоническом этапе, начавшемся в неогене, они вновь претерпели тектоническую активизацию, проявившуюся в сводово-глыбовых поднятиях и создании современного горного рельефа. Такая вторичная тектоническая активизация называется дейтероорогенезом (вторичным орогенезом). Примерами являются Тянь-Шань, Ал-тае-Саянская складчатая область и др.
К океаническим орогенам относятся срединно-океанические хребты (см. ниже).
ПЛАТФОРМЫ
Горноскладчатые области испытывают воздействие эрозии и денудации, что приводит к нивелировке рельефа и формированию полого-всхолмленной равнины - пенеплена. Возникшая континентальная кора приобретает жесткость в результате глубокого метаморфизма и гранитизации. Проявляются вертикальные движения, которые фиксируются плавными пликативными дислокациями осадочных пород. С этого момента литосфера вступает в новый этап своего развития -платформенный. Платформа (по В.Е.Хаину) - это относительно устойчивый, консолидированный складчатостью, метаморфизмом и интрузиями крупный участок литосферы изометрических очертаний.
Для платформ характерны изометричность границ, как правило, небольшая амплитуда вертикальных движений, относительно выровненный рельеф, сравнительно небольшая мощность осадков (2-3 км), мелководные (неритовые) фации, редкое проявление магматизма - траппового и щелочного, отсутствие или слабое проявление метаморфизма (например, глины преобразуются в аргиллиты), на большом протяжении горизонтальное или слабо наклонное залегание осадочных пород. Выделяют 2 типа платформ: 1) Континентальные платформы или кратоны. Кора этих платформ соответствует стандарту континентальной коры и характеризуется слабым изменением мощности от 35 до 55 км, в среднем 40 км. 2) Океанические платформы или талассократоны.
Платформы имеют двухъярусное строение. Нижний структурный ярус (этаж) образован в геосинклинальную и орогенную предысторию и получил название фундамента. Фундамент представлен как интрузивными породами - гранитами и др., - так и сложноскладчатыми, метаморфи-зованными породами - гнейсами, амфиболитами, кристаллическими сланцами и т.д. На древних платформах складчатый фундамент соответствует гранито-гнейсовому слою земной коры и называется кристаллическим. Молодые платформы имеют складчатый фундамент.
Фундамент несогласно перекрывается горизонтально или полого залегающими осадочными толщами, образующими платформенный (осадочный) чехол. Формирование его происходило на платформенном этапе развития. Чехол - обычно осадочные породы, реже с прослоями эффузивных образований.
Щиты - приподнятые блоки земной коры, в пределах которых на дневную поверхность выходят породы кристаллического фундамента, осадочный чехол отсутствует. На платформенном этапе щиты испытали преобладающие восходящие вертикальные движения. Они никогда не перекрывались значительным платформенным чехлом!
Особое местое среди крупных отрицательных структур занимают авлакогены (греч. avlac -борозда, genesis - происходить). На древних платформах это крупные грабенообразные прогибы в фундаменте, заполненные отложениями, напоминающими молассы орогенных областей. Отложения, выполняющие авлакогены, иногда дислоцированы, особенно вблизи бортов у разломов. Нередко среди пород, заполняющих авлакогены, выделяются магматические комплексы основного состава и небольшие кислые интрузии.
Плиты - области платформ, характеризующиеся широким развитием осадочного чехла, что свидетельствует о длительном и устойчивом их погружении.
В пределах плит выделяются крупные участки с относительно опущенными и приподнятыми участками поверхности фундамента и соответственно с различной мощностью платформенного чехла. Это очень пологие отрицательные и положительные структурные формы. Обычно в пределах отрицательных форм - синеклиз - глубина залегания фундамента более 1,5-2 км и разрез чехла характеризуется большой полнотой. В некоторых синеклизах мощность чехла достигает 5-10 км и даже 20-25 км. В положительных структурах - антеклизах - глубина залегания фундамента меньше, на небольших участках он может быть вскрыт эрозией; разрез чехла неполный, мощности систем, отделов сокращены. Наклон слоев на крыльях синеклиз и антеклиз измеряется первы-. ми градусами, иногда минутами.
Прогибы (впадины) и своды (выступы) - платформенные структуры второго порядка, осложняющие антеклизы и синеклизы; могут быть самостоятельными.
Валы - значительные по размерам вытянутые платформенные структуры, объединяющие несколько структур более мелкого порядка. В зависимости от размеров и особенностей строения различают крупные валы (мегавалы), сложные валы и просто валы - вытянутые поднятия, охватывающие несколько брахиантиклиналей.
Моноклинали - крупные структуры, состоящие из слоев, наклоненных в одну сторону. Соляные купола широко распространены на некоторых участках платформ. В зонах развития солянокупольных структур характер деформаций платформенного чехла резко отличается выше и ниже соленосной толщи, с которой связаны соляные купола.
На платформах в чехле развиты флексуры, отражающие блоковое строение фундамента платформ.
Классификация континентальных платформ производится обычно по времени образования их фундамента. Различают древние (эпикарельские) платформы, сложившиеся в первой половине протерозоя и молодые платформы, возникшие позже (эпибайкальские, эпигерцинские и др.);
Тектонические структуры раннего докембрия, наблюдаемые в фундаменте древних платформ, должны рассматриваться особо. Среди положительных (антиклинорных) тектонических структур в фундаменте древних платформ широко распространены гранито-гнейсовые купола и овалы. Купола разделены синклинальными структурами - зеленокаменными поясами. Подобные структуры могли сформироваться в условиях высокой пластичности и сильного прогрева земной коры, что было обычным в раннем докембрии. Для структур раннего докембрия (архей - ранний протерозой) используются приставки "прото" и "палео" (протоплатформы, протогеосинклинали, палеоавлакогены).
↑ ОСОБЕННОСТИ СТРОЕНИЯ ОКЕАНИЧЕСКОЙ ЗЕМНОЙ КОРЫ
Длительное время считалось, что океаническая кора принципиально не отличается по строению от континентальной: океаны (кроме Тихого) представляют собой временно опущенные по разломам блоки, где идет накопление морских осадков, после чего они вновь могут подняться и стать континентами; континентальные же блоки могут опуститься и на них начнется морское.
Новые методы изучения дна океанов (глубоководное бурение, геофизические исследования, в том числе использование лазеров) позволили выявить многие детали строения, отличающие океаническую кору от континентальной.
Кора океанического типа состоит из трех слоев (сверху вниз):
Первый слой - осадочная толща мощностью от 0 до 0,5-1 км (в среднем 0,2-0,5 км). Скорость осадконакопления 1-5 мм/тыс, лет. На большей части глубоководного ложа имеет меловой и кайнозойский возраст.
Второй слой - лавы, в том числе подушечные, дайки базальтов (в нижней части слоя).. Мощность 1,5-2 км. Возраст пород средняя юра - кайнозой.
Третий слой - бурением не вскрыт, но драгированием в зонах разломов получены образцы основного (габброиды) и отчасти ультраосновного составов. Средняя мощность 3-4 км-. Третий слой подстилается верхней мантией, сложенной перидотитами. Таким образом, второй и третий слои принадлежат "базальтовому" геофизическому слою.
В пределах Мирового океана выделяются три типа областей: материковые, океанические окраины и ложе океана (Цейслер, 1979).
Материковые окраины. Граница между континентальной и океанической корой не совпадает с географической границей суши и моря. Геологи проводят такую границу в месте сопряжения континентальных и океанических блоков. Периферическим частям материков ниже уровня океана соответствуют шельф и материковый склон. Области шельфа - окраины материков, залитые неглубоким морем (до 250-300 м), сложены корой континентального типа. Ширина шельфа меняется от десятков до более чем 1500 километров (Северный Ледовитый океан). На шельфах продолжает накапливаться осадочный чехол. Поверхность земной коры в области шельфа полого (1-1,5") наклонена в сторону океана. На глубинах 100-200 м обычно располагается бровка шельфа, ниже которой начинается материковый склон. Поверхность последнего наклонена круче (более 3°) и имеет общее ступенчатое строение.
Материковый или континентальный склон - гигантская флексурообразная структура, осложненная системой глобальных разломов. К подножию материкового склона через систему каньонов, часто продолжающих под водой русла крупных рек, мутьевыми потоками и гигантскими оползнями сносятся огромные массы осадков, образующие крупные конусы выноса. Поверхность дна подножия материкового склона обычно обладает чертами аккумулятивной равнины с крупными холмами, которые образованы отдельными конусами выноса или гигантскими оползневыми массивами осадочных пород. Граница континентальной и океанической коры проводится между материковым или континентальным склоном и континентальным подножием.
Океанические окраины. Структурные формы океанических окраин наиболее полно представлены в Тихом океане, где они включают глубоководные окраинные котловинные моря, островные дуги и глубоководные желоба.
Окраинным котловинным морям (Японское, Охотское, Берингово и др.) соответствуют крупные брахиформные депрессии глубиной до 3-5 км. Земная кора окраинных морей местами подобна океанической, однако она нередко обладает увеличенной мощностью осадочного слоя. Поверхность дна окраинных котловинных морей имеет черты аккумулятивной равнины, однако там, где осадков мало, дно обнаруживает высокую степень раздробленности. Строение дна некоторых данных морей осложнено подводными поднятиями (поднятие Ширшова в Беринговоморской котловине, Ямато - в Япономорской и др.), которые возвышаются над дном котловин на 1,5-3 км и имеют блоковое строение.
Островные дуги (Алеутские, Курильские, Японские острова и т.п.) образуют протяженные (1000-3000 км) горные сооружения, которые вместе с сопряженными с ними глубоководными желобами отделяют окраинные котловинные моря от области океанического ложа. Среди островных дуг выделяются два типа: одинарные и двойные. Одинарные дуги образованы узкой (50-70 км) цепочкой вулканических сооружений, покоящихся на низком и широком (до 200 км) сводовом поднятии (Идзу-Бонинская, Марианская и др.), или же широким (70-120 км) и высоким (2-3 км) хребтом, увенчанным цепочкой вулканических аппаратов, смещенных к приматериковому склону дуги (большая часть Алеутской, среднее звено Курило-Камчатской дуги и др.). Вулканизм преобладает базальтовый и андезитовый. Двойные дуги образованы двумя грядами хребтов с одним цоколем. На внешнем хребте вулканизм почти не проявлен; склоны внешнего хребта имеют ступенчато-сбросовое строение.
Островные дуги рассматриваются в качестве геоантиклинальных поднятий современных геосинклинальных областей. Двойные дуги обладают "зрелой" корой материкового типа; в одинарных дугах гранито-гнейсовый слой маломощный.
Глубоководные желоба расположены у подножий мегантиклинориев кайнозойских складчатых систем или на внешних окраинах островных дуг со стороны океана. Глубоководные желоба представляют собой протяженные (1500-4000 км) депрессии глубиной 5-10 км и шириной по дну 5-20 км. Поперечный профиль желобов асимметричный, склоны неравновеликие, ступенчатые, средняя крутизна склонов 5°. Обычно склоны желобов лишены осадочного покрова; последний развит в наиболее глубокой части желобов, куда осадки выносятся мутьевыми потоками. Днища желобов с осадочным выполнением уплощенные.
Глубоководные желоба образуют протяженные системы и главным образом опоясывают центральную часть Тихого океана. Со стороны океанических котловин с желобами граничит такая же протяженная система невысоких пологих краевых валов, являющихся структурными элементами океанского ложа. К склонам желобов и прилегающим островным дугам приурочены зоны повышенной сейсмической активности, которые объясняются выходом на поверхность гигантских поверхностей скола, с которыми связаны как мелко-, так и глубокофокусные землетрясения (зоны Заварицкого-Беньофа). Над глубоководными желобами отмечаются зоны пониженных значений теплового поля.
В представлениях "новой глобальной тектоники" глубоководным желобам отводится важная роль, так как по ним проводятся границы литосферных плит разного типа. Местоположение желоба фиксирует линию'поддвигания океанической плиты под материковую (процесс субдукции).
Ложе океана. Внутриокеанические структурные формы резко различаются степенью подвижности. Среди них выделяются сейсмически активные области (океанические подвижные пояса) и асейсмичные области (океанические платформы или талассократоны). Первая категория структур - глобальная система срединно-океанических хребтов, вторая включает океанические котловины (плиты), а также различные типы внутриокеанических сводовых и глыбовых поднятий и краевых валов.
Срединно-океанические хребты - протяженная (около 20000 км) и широкая (до 1000 км) система горных сооружений, поднимающихся до 2-3 км над дном океана. Это самые крупные горные системы на поверхности земного шара. Особенно хорошо выражены они в Атлантическом и Индийском океанах. Отдельным вершинам хребтов соответствуют острова вулканического происхождения (о-ва Пасхи, Св.Елены, Св.Павла, Тристан-да-Кунья и др.). Нижние части склонов хребтов обычно пологие, в приосевой части склоны изборождены глубокими продольными желобами и возвышающимися над ними гребнями. Вдоль осевой части хребтов располагается система рифтов.
Рифты представляют собой грабенообразные структуры, в которых центральные блоки ограничены глубинными разломами, доходящими обычно до мантии. Осадочный покров на склонах хребтов крайне маломощен, утонен также и "базальтовый слой". Рифтовые системы отличаются высокой тектонической и вулканической активностью, повышенными значениями теплового поля (в 5-7 раз выше среднего). Мантия в этих зонах ближе подходит к поверхности, а мантийные конвекционные потоки под хребтами направлены снизу вверх. К хребтам приурочены системы полосовых магнитных аномалий. По мнению сторонников гипотезы разрастания океанического дна, в зоне срединно-океанических хребтов происходит формирование новой земной коры за счет выплавки базальтов и раздвижения соседних литосферных плит по горизонтали (спрединг).
Рифтовые системы наблюдаются не только в океанах, они прослеживаются и на континентах. Таковы, например, Восточно-Африканская, Калифорнийская, Байкальская и другие рифтовые области.
Отдельные отрезки подводных хребтов ступенчато смещены в плане по поперечным, так называемым трансформным разломам. На поверхности они выражены уступами дна или узкими глубокими каньонами.
Огромные площади за пределами срединно-океанических хребтов заняты океаническими котловинами с глубинами 4-6 км. Их называют еще океаническими платформами, или талассо-кратонами. Поверхность дна этих депрессий слабо холмистая, с отдельными вулканическими конусами. Многочисленные разломы обусловливают ступенчатый рельеф дна многих котловин. Мощность осадочного покрова в океанических котловинах небольшая, менее 1000 м. Возраст осадков различен. Их геофизическая характеристика подобна характеристикам котловин окраинных морей.
Среди асейсмичных поднятий, разделяющих океанические котловины и осложняющих их строение, выделяется несколько типов: сводовые валообразные поднятия (Гавайский вал, вал Шатского и др.) и глыбовые хребты (Восточно-Индийский и др.). Склоны и сводовые части поднятий увенчаны вулканическими конусами.
В западной части Тихого океана особенно многочисленны подводные горы с плоскими вершинами, погруженными, либо выходящими на поверхность в виде островов. Такие подводные горы образуют целые системы и получили название гайоты.
В океанических структурах развиты лавы основного и ультраосновного состава, причем наиболее широко распространены щелочные базальты.
Дальнейшее изучение структурных форм океанов, их сравнение со структурами континентов, выяснение места океанических структур в общем эволюционном ряду структурных форм земной коры является первостепенной задачей, от решения которой зависит разработка современных геотектонических концепций.
НАПИСАТЬ КОММЕНТАРИЙ