Методы исследования генезиса отложений
Содержание:
Методы исследования генезиса отложений
Методы исследования генезиса отложений образуют большую группу, объединяющую совокупность литолого-петрографических, геоморфологических, геохимических и прочих исследований. Большинство из них могут дать информацию не только о генезисе пород, но и о климатических условиях времени их накопления – значит, оказать помощь в решении стратиграфических проблем. Чаще других применение находят литолого-петрографические и геоморфологические группы методов.
Литолого-петрографические методы посвящены изучению вещественного состава, особенностей структур и текстур горных пород.
Гранулометрический анализ
Гранулометрический анализ позволяет получить упорядоченную информацию о размере частиц, слагающих осадочную породу. Четвертичные образования в большинстве своем являются продуктами физического разрушения, которые подверглись переотложению экзогенными силами. Гораздо меньший объем среди них занимают хемогенные и органогенные накопления. Для терригенных пород разработано большое количество классификаций, базирующихся на двух принципах разделения частиц по диаметру.
Первый принцип – десятичный: основные подразделения пород по конечному диаметру отличаются в 10 раз.
Второй принцип – генетический: классификации учитывают физические свойства частиц, специфику динамики их осаждения и др.
Во всех систематиках обломки разделяются по размеру на четыре группы: грубообломочные (псефиты), песчаные (псаммиты), алевритовые, глинистые (пелиты). Проводя гранулометрический анализ необходимо учитывать, что осадок может быть сложен либо однородными по диаметру частицами, либо смесью обломков разного размера. В первом случае применима десятичная шкала Л. Б. Рухина (табл. 1); во втором – двухмерная шкала Н. М. Сибирцева (табл. 2), основанная на процентном содержании алевритовых и глинистых частиц. Практической основой такого разделения служат полевые и лабораторные гранулометрические анализы. Среди полевых шире всего используются визуальный и ситовой.
↑ Петрографический и минералогический анализы
Петрографический и минералогический анализы играют первостепенную роль в литолого-петрографическом изучении пород. Породообразующие и акцессорные минералы осадочных пород делятся на две группы: аллотигенную и аутигенную. Аллотигенныеминералы принесены динамическими агентами издали, из районов разрушения горных пород. Аутиненныеминералы возникают в составе осадка при его накоплении и диагенезе. Следовательно, изучение минерального и петрографического состава помогает выявлять: области денудации и сноса горных пород; динамику процессов денудации; перспективность региона на наличие полезных ископаемых, а также непосредственно разведывать месторождения.
Кроме того, петрографические и минералогические методы необходимы при проведении палеогеографических реконструкций и стратиграфическом расчленении отложений.
Таблица 1
Гранулометрическая классификация обломочных и глинистых пород однородного по размеру состава (по Л. Б. Рухину, 1953 г.)
Диаметр частиц, мм |
Группы пород |
Название обломков |
Название рыхлых пород* |
|
Сложенных окатанными обломками |
Сложенных угловатыми обломками |
|||
> 1 000 |
Грубообломочные |
Глыбы |
Глыбовые валунники |
Скоплениеглыб |
1000–500 500–250 250–100 |
Валуны: крупные средние мелкие |
Валунники: крупные средние мелкие |
Скоплениеглыб: крупных средних мелких |
|
100–50 50–25 25–10 |
Галька: крупная средняя мелкая |
Галечник: крупный средний мелкий |
Щебень: крупный средний мелкий |
|
10–5 5–2 2–1 |
Гравийные зерна: крупные средние мелкие |
Гравий:
крупнозернистый среднезернистый мелкозернистый (песок грубозернистый) |
Дресва:
крупнозернистая среднезернистая мелкозернистая (песок грубозернистый) |
|
1–0,5 0,5–0,25 0,25–0,1 |
Песчаные |
Песчаные зерна: крупные средние мелкие |
Пески: крупнозернистые среднезернистые мелкозернистые |
|
0,1–0,05 0,05–0,005 0,005–0,001 |
Алеврито- вые |
Алевритовые частицы крупные средние мелкие** |
Алевриты:
крупнозернистые (тонкозернистые пески) среднезернистые мелкозернистые |
|
<0,001 |
Глинистые |
Глинистые частицы** |
Глины |
* Для сцементированных пород приняты следующие названия: грубообломочных, сложенных угловатыми частицами – брекчии; окатанными – конгломераты; пескам соответствуют песчаники, алевритам – алевролиты, глинам – аргиллиты.
** На практике к алевритам обычно относят обломки диаметром от 0,1 до 0,01 мм; к глинистым частицам – менее 0,01 мм.
Таблица 2
Сопоставление классификаций рыхлых пород смешанного состава
Содержание частиц размером 0, 01 мм, % |
По Н. М. Сибирцеву |
По Л. Б. Рухину |
До 5 |
Песок |
Песок |
5–10 |
Песок глинистый |
Песок глинистый |
10–20 |
Супесь грубая |
Алевриты грубозернистые (тонкозернистые пески) |
20–30 |
Супесь тонкая |
Алевриты крупнозернистые |
30–40 |
Суглинок грубый |
Алевриты мелкозернистые |
40–50 |
Суглинок тонкий |
Алевриты тонкозернистые |
50–60 |
Глина грубая |
Глина песчанистая |
60–75 |
Глина тонкая |
Глина алевритистая |
75 и более |
Глина типичная |
Глина типичная |
Рассматриваемые методы опираются на признание того, что минеральный и петрографический состав обломочных пород зависит от следующих факторов.
1. От климата, определяющего характер и активность процессов выветривания, а значит, и вещественный состав продуктов выветривания.
2. От величины денудационного среза, обуславливающей, в первую очередь, вертикальную и горизонтальную зональность продуктов разрушения.
3. От динамики агентов, транспортирующих и избирательно сортирующих обломки.
4. От миграционных свойств пород и минералов, подвергшихся транспортировке.
При анализе миграционных свойств используются понятия абразионнойпрочности (способности обломков противостоять разрушению при транспортировке) и миграционнойспособности (максимального расстояния транспортировки обломков). Установлено, что миграционная способность минералов тем выше, чем большей абразионной прочностью они обладают. Наоборот, миграционная способность тем ниже, чем больший у минералов удельный вес. Следовательно, максимальной миграционной способностью обладают самые прочные и, одновременно, самые легкие минералы и породы. По миграционной способности их можно разделить на пять групп – от весьма высокой до низкой. Так, весьма высокой миграционной способностью среди минералов отличаются кварц и кислые плагиоклазы, а в числе горных пород – халцедоны, яшмы, кварциты. В группах низкой миграционной способности соответственно значатся гипс, доломит и кальцит, а также мергели, известняки и мраморы.
Примером использования минералого-петрографических анализов может служить метод изучения руководящих валунов, являющихся, по сути, аллотигенными. Метод разработан для областей покровных оледенений, и позволяет не только выявлять области ледниковой экзарации и сноса, но и восстанавливать направление движения ледниковых потоков.
Для всей четвертичной толщи доказано, что вниз по разрезу последовательно возрастает содержание пород, отличающихся высокой миграционной способностью. Так, в отложениях нижнего плейстоцена на их долю приходится 50–60% от всех обломков, а в породах верхнего плейстоцена – лишь 25–35%. Указанная закономерность объясняется тем, что на протяжении квартера ледниками, реками и другими силами многократно переотлагались одни и те же поверхностные накопления. Также хочется отметить тот факт, что медицина является одной из самых важнейших наук наравне с географией. На сегодняшний день уровень подготовки и опыт лечащих врачей Израиля является одним из самых высоких и востребованных в мире. Поэтому
↑ Изучение формы обломков и окраски пород
Изучение формы обломков позволяет получать информацию об агенте, их транспортировавшем, и о дальности переноса. Определение формы ведется только для крупных обломков и песков – очевидно, что они бывают угловатыми и окатанными. Степень окатанности может весьма сильно различаться – она зависит от динамических характеристик агента, дальности переноса, изначальной формы и миграционной способности обломков. Сильнее всего окатывает обломки текучая вода, причем форма возникающих галек определяется не только силой, но и самим характером движения воды. Так, при колебательном (возвратно-поступательном) волновом перемещении в зонах морских и озерных пляжей образуется дисковидная галька. При поступательном движении руслового потока галька приобретает форму трехосного эллипсоида. Перенесенные ледником обломки обретают утюгообразные очертания, а подвергшиеся ветровой корразии камни – трехгранных пирамид.
Скорость истирания обломков также различается, в зависимости от их состава, массы и первоначальных размеров. Быстрее и сильнее всего окатываются крупные обломки мягких пород: доказано, что максимальная активность истирания пород любого состава наблюдается на первых 60–100 км пути, а после 200 км переноса форма почти не меняется [19]. Вместе с тем, для существенного изменения очертаний песчинок требуется либо транспортировка не менее чем на 700 км, либо многократное их переотложение.
Исследование окраски пород помогает определять их вещественный состав и условия образования. В зависимости от времени и причины возникновения, выделяют три типа окраски: первичный, сингенетический, вторичный.
Первичная (унаследованная) окраска определяется цветом породообразующих обломков. Породы приобретают ее или в результате господства физического выветривания, или при очень быстром накоплении и захоронении осадка. Белая окраска песков Беларуси свидетельствует о преобладании кварца, желтоватая – об участии ортоклаза, зеленоватая – глауконита.
Сингенетическаяокраска всегда заполняет весь слой и зависит от трех факторов: от цвета породообразующих обломков, от их размера, а также от цвета цементирующего вещества. Характерно, что по мере уменьшения диаметра обломков тональность пород темнеет. Очевидно, что изучение сингенетической окраски помогает восстанавливать палеогеографические условия времени осадконакопления: красно-желтый и красный цвет возникает при седиментации породы в жарком влажном и переменно-влажном климате; ржаво-бурый до черного – в условиях жарких пустынь; оттенки желтого цвета свойственны застойно-водным аккумуляциям.
Вторичнаяокраска возникает после формирования осадка под воздействием различных гипергенных процессов. Поскольку эти процессы гораздо больше зависят от климата и времени, чем от состава пород, то вторичная окраска может распространяться на разную глубину, никак не согласуясь со слоистостью отложений. Темно-серый и черный цвет обусловлен пропиткой пород битумом, или же растворами, содержащими сернистое железо или соли марганца.
↑ Исследование текстур четвертичных отложений
Исследование текстур четвертичных отложений позволяет восстанавливать условия осадконакопления. Под текстурой понимают совокупность признаков строения горных пород, обусловленных ориентировкой, относительным расположением и распределением составных частей осадочной породы. В зависимости от времени и причины формирования, текстуры разделяют на три группы:
·первичныетекстуры возникают в процессе осадконакопления, и отражают особенности динамики аккумулирующего геологического агента – например, образование горизонтальной слоистости в стоячей воде;
·вторичныетекстуры сингенетичны (одновременны) осадконакоплению, но формируются процессами, не связанными с деятельностью главного агента седиментации – возникновение ледяных жил одновременно с накоплением делювия;
·эпигенетическиетекстуры связаны с процессами постседиментационного преобразования осадка – образование трещин усыхания на поверхности такыра.
Среди вторичных и эпигенетических текстур наиболее распространены те, которые связаны с процессами мерзлотными и гравитационными.
Наибольшее внимание следует уделять изучению первичных текстур, которые проявляются в слоистости горных пород. Различают слоистость внешнюю и внутреннюю.
Внешняяслоистость, или собственно слоистость, выражена слоями. Слои отличаются друг от друга составом, цветом и др. Каждый слой возникает при изменениигеографических условий аккумуляции (например, при переходе речного русла в состояние старицы, слой руслового аллювия перекроется слоем озерных отложений). Границы между слоями называют слоевымишвами – они бывают четкими (резкими) и нечеткими (постепенными). В зависимости от толщины слоев, слоистость разделяют на массивную (>50 см), крупнослоистую (50–10 см), среднеслоистую (10–2 см), тонкослоистую (2–0,2 см), микрослоистую (доли миллиметра).
Внутренняяслоистость иначе называется слойчатостью. Наблюдается она внутри слоев и представлена слойками. Слойки образуются при кратковременных пульсациях транспортирующего агента, но в неизменной фациальной обстановке (например, в русле реки накапливается слой руслового аллювия, в котором заметна косая слойчатость). Ритмичность пульсаций ведет к тому, что слойки в разрезе многократно повторяются, и группируются в серии. Границы между сериями слойков называются серийнымишвами.
Выделяют четыре главных типа внутренней слоистости: косая, косоволнистая, волнистая, горизонтальная. Каждый тип делится на подтипы, виды и разновидности. Кроме того, существует и пятый тип – массивный, связанный с накоплениями, лишенными внутренней слоистости.
Косая слоистость образуется при самых высоких скоростях перемещения обломков.
В ней слойки лежат под значительным углом к серийным швам, границы слойков ровные, а направление падения совпадает с направлением движения потока. Для русловых отложений наиболее характерен диагональный подтип косой слоистости: границы серий ровные, наклон слойков одинаков (а). Дельтовым осадкам свойственен флексурообразный подтип: границы серий также ровные, но слойки изогнуты в виде буквы S (б). В эоловых отложениях бывает выражен перекрестный (клиновидный) подтип: серийные швы часто срезают друг друга, а рисунок слойков самый разный (г). Делювиальные накопления отличаются весьма сложной черепитчато-линзовидной слоистостью: чередование слоев смытых пород со слоями погребенных почв; границы слоев параллельны поверхности склона; маломощные и очень короткие косослоистые серии; быстрая смена ориентировки серийных швов.
Косоволнистый тип формируется при умеренных скоростях. Серийные швы здесь уже не ровные, а изогнутые. Кроме того, могут изгибаться и сами слойки – чем ниже скорость, тем сильнее изгиб и меньше угол их наклона.
Волнистая слоистость характерна для малых скоростей. Границы слойков и серийных швов здесь изгибаются и могут залегать почти горизонтально.
Горизонтальнаяслоистость возникает в спокойных условиях осадконакопления (ложе океана, глубоководная часть озера, болото).
Наконец, необходимо остановиться на отложениях, в составе которых внутренняя слоистость может отсутствовать. К числу таких накоплений нередко относятся моренные, обвально-осыпные, и практически всегда – лессы. По мнению Н. Б. Вассоевича, их текстуру следует называть слоеватой. Такое определение представляется не слишком удачным – гораздо лучше по отношению к неслоистым осадкам использовать термин “массивнаятекстура” .
Помимо изучения слоистости, необходимо уделять внимание исследованию ориентировки длинных осей крупных обломков. Гальки морских и озерных пляжей вытянуты длинными осями параллельно берегу. Речная галька в области стрежня ориентирована по направлению течения, а близ берега – под углом. Гальки донной морены вытянуты по направлению движения ледника.
↑ Геоморфологические методы
Геоморфологические методы, используемые в четвертичной геологии, по-своему универсальны – они позволяют решать обе важнейших задачи: производить стратиграфическое расчленение поверхностных отложений и выявлять их генезис. Столь широкий спектр их возможностей объясняется теснейшей связью, существующей между геологическими и геоморфологическими процессами. Иными словами, определенные процессы разрушения и накопления горных пород ведут к образованию конкретных типов и форм рельефа.
Именно на такую взаимосвязь опираются методы определениягенезисаотложений.(или морфогенетической диагностики).Например, экзарационная деятельность мощного горного ледника, спускающегося по речной долине, приведет к возникновению троговой долины, обладающей закономерными особенностями строения. При таянии этого ледника у его края на дне долины накопятся неотсортированные конечно-моренные отложения, представленные в рельефе асимметричными валами конечно-моренных гряд, ориентированных поперек долины. Таким образом, условия распространения слабоизмененных аккумулятивных форм рельефа, а так же их морфологические особенности являются четкими индикаторами генезиса отложений, слагающих эти формы.
Использование методов изучения морфологии геологических тел обусловлено необходимостью правильной диагностики форм рельефа с целью выявления состава и генезиса слагающих их отложений. Для решения этой задачи анализируется геометрия, морфометрия и морфография рельефа – формам и элементам рельефа дается количественная характеристика (высота, длина, ширина, уклон поверхности и проч.). Такие исследования проводятся инструментально: либо в полевых условиях, либо в камеральных – путем замеров по топокартам, аэро- и космическим снимкам.
Методы определения относительного возраста отложений используются в стратиграфии квартера, и базируются на установлении относительного возраста форм рельефа. Среди них выделяют ряд частных методов. Метод возрастных рубежей позволяет довольно точно устанавливать возраст аккумулятивной формы. Для этого необходимо знать возраст прилегающих к ней форм, идентичных по генезису, но возникших раньше и позже изучаемой. Например, вторая надпойменная терраса всегда будет моложе третьей, но старше первой. Метод наложенных форм отличается меньшей точностью. Суть его также чисто стратиграфическая: для выявления относительного возраста наложенной формы надо знать возраст погребенной под нею формы (и наоборот): из двух моренных горизонтов более древним окажется подстилающий. Метод аналогий обладает еще меньшей точностью. Если на территориях, сходных геоморфологически, геологически и географически, представлены идентичные формы рельефа, сложенные такими же горными породами, и в той же степени денудированными, то возраст этих форм совпадает. Примерно тем же уровнем точности обладает и метод анализа степени денудированности – чем раньше возникла какая-либо форма рельефа, тем дольше на нее воздействовали процессы денудации. Следовательно, из нескольких генетически аналогичных форм рельефа, находящихся в одинаковых природных (климатических) условиях, самой древней будет та, которая сильнее всего изменена денудацией – для более старых положительных форм свойственны уплощенные вершины, выположенные склоны и большая мощность делювиального шлейфа у подножья.
Кроме перечисленных, в исследовании четвертичных отложений применяются методы археологические, палеокриологические, геофизические и геохимические, а также целый ряд других, анализу которых посвящена специальная литература.
НАПИСАТЬ КОММЕНТАРИЙ