Структурное дешифрирование снимков
Содержание:
↑ Структурное дешифрирование снимков
Структурное дешифрирование предусматривает выявление по аэрокосмоизображениям особенностей ландшафта, связанных с проявлением на земной поверхности новейших текгонических форм и элементов глубинного строения. При дешифрировании МДС используется контрастно-аналоговый и геоиндикационный методические подходы.
Контрастно-аналоговый метод изучения структурных элементов литосферы по МДС заключается в типизации полей фотоизображения с определенным набором дешифровочных признаков. В этом случае априорно предполагается, что территории со сходными геолого-геоморфологическими условиями имеют на МДС одинаковый фоторисунок, а с различными - отличаются по фотоизображению. При изучении тектонических особенностей по МДС таким способом основное значение имеет анализ структуры фотоизображения.
Структурные формы платформенного чехла и фундамента, активизированные на неотектоническом этапе, отражаются на МДС в виде линейных, кольцевых и площадных аномалий рисунка аэрокосмоизображения. Линейно вытянутым контрастным фрагментам фоторисунка соответствуют линеаменты - индикаторы тектонической делимости земной коры. Системы полосовых аномачий более темного фотона, чем соседние участки фотоизображения, являются показателями зон трегпиноватости с повышенной проницаемостью для глубинных флюидов. Изометричная ориентировка фотоаномалий характерна для кольцевых структур - сложно построенных гетерогенных образований земной коры. Площадным аномалиям фоторисунка соответствуют тектонические блоки, различающиеся новейшим геодинамическим режимом.
При тектонических построениях на основе МДС наиболее информативен геоиндикационный метод, предусматривающий анализ ландшафтных индикаторов проявлений структурных элементов литосферы. По аэро- и космическим снимкам с привлечением значительного объема фактологического материала (геоморфологического, геохимического, геолого-геофизического и др.) устанавливают корреляционные связи между ландшафтными особенностями земной поверхности, новейшим геодинамическим режимом и погребенными структурными формами. Чем выше степень унаследованности структур платформенного чехла и фундамента древнего заложения к новейшему структурному плану, тем информативнее геоиндикационное дешифрирование МДС.
В основу геоиндикационного метода положена теоретическая концепция о ландшафтах как динамичных природных системах, в которых отражены изменения, вызванные новейшими тектоническими процессами. Ландшафтные индикаторы, или геоиндикаторы представляют собой как отдельные природные компоненты, так и ПТК в целом, связанные с характером проявления на поверхности Земли структурных форм, активных в позднеолигоцен-антропогеиовое время. Геоиндикаторы объединены в моно- и полисистемную группы. Первая включает в себя геологические (фиксируемые во внешнем облике ландшафта), геоморфологические, гидрографические и геоботанические признаки. Группа полисистемных индикаторов состоит из ПТК разных иерархических уровней.
Структурное дешифрирование МДС играет важную роль при составлении тектонических карт, геодинамическом анализе областей нефтегазонакопления, изучении структуры рудных полей и месторождений.
↑ Автоматизированное геологическое дешифрирование аэрокосмических снимков
Обработка больших объемов геологической информации, получаемой при аэрокосмических съемках, может успешно осуществляться лишь при использовании быстродействующих ЭВМ. Автоматизация процесса обработки МДС позволяет повысить точность и объективность результатов дешифрирования больших массивов геологических данных. При автоматизированной обработке МДС решаются задачи двух видов: моделирование и восстановление изображений, улучшение их качества, контрастных характеристик, фильтрация различного рода искажений. Другим видом обработки является геологический анализ и проведение измерительного дешифрирования путем решения фотограмметрических задач. При обработке изображений в цифровой форме осуществляется ввод изображений в ЭВМ и их математическая обработка. Обобщенная схема устройства ввода аэрокосмической информации включает в себя: блок сканирования, обеспечивающий автоматическое считывание фотографического изображения, блок фотометрирования и блок сопряжения устройства с ЭВМ.
Применение ЭВМ для обработки видеоизображений позволяет находить количественные показатели многозональной видеоинформации, например, статистические характеристики. Последние на первой ступени обработки изображения можно рассматривать как априорную информацию, позволяющую на следующих ступенях визуализировать различные контрасты, что упрощает процедуры классификации. Купить
Общую задачу обработки аэрокосмической видеоинформации можно определить как выяснение геологических свойств объектов по результатам измерения их спектрального излучения, структуры и текстуры фотоизображения, с участием оператора-дешифровщика осуществляется так называемый интерактивный режим обработки снимков, при котором оператором производится управление процессом обработки, анализ результатов контроля за качеством решения поставленной задачи.
К числу основных операций интерактивной обработки видеоизображений относятся: выделение заданных элементов анализируемого изображения из окружающего фона, проведение измерительных и вычислительных операций по выделенным элементам. Анализ выделенных элементов позволяет оператору оценить эффективность используемых программ применительно к решению поставленной задачи, выбрать режим для дальнейшей обработки. Выделение заданных элементов изображения осуществляется с использованием цвета в качестве признака, а также характеристик текстуры.
Для получения точности процесс обработки интерактивным методом имеет ступенчатую структуру, при которой оператор, выбирая траекторию перехода от процедуры к процедуре, анализирует промежуточные результаты, отображая их на экране дисплея.
Общая схема обработки МДС включает в себя следующие этапы:
• статистический анализ априорных данных;
• накопление и анализ дешифровочных признаков;
• выделение на анализируемых снимках границ однородных областей (сегментация);
• автоматизированная классификация изображений в диалоговом режиме (управление классификацией);
• присвоение выделенному классу геологического содержания (идентификация).
Исследования на всех этапах работ требуют участия специалистов -геологов.
В ходе автоматизированной обработки МДС первоначально формируется и анализируется набор геологических данных, обеспечивающий решение поставленной задачи. На основании данных анализа проводится выбор эталонных геологических объектов, обобщаются и изучаются на местности их основные спектрально-отражательные характеристики.
Основу интерактивной геологической автоматизированной обработки составляют программные комплексы, позволяющие осуществить выделение однородных областей и производить управляемую классификацию. Подобная классификация проводится в три этапа:
• на первом этапе интерпретатор очерчивает на исследуемом изображении тестовый участок, на котором осуществляется расчет его статистических характеристик;
• на втором этапе просматриваются все элементы изображения, и если функция правдоподобия их принадлежности к классу обучающего тестового участка местности (эталона) превышает заданный порог, то элемент отмечается на экране дисплея;
• на третьем этапе производится операция сглаживания изображения так называемым скользящим окном, при этом выделяются связанные Участки изображения и осуществляется получение геологической карты.
Особое место в технологии электронной обработки космической информации занимает построение и анализ цифровой модели (ЦМ) пространственного распределения равных значений спектральных яркостей геологических объектов. Последние с одинаковой структурой распределения яркостных показателей объединяются в тематические классы. Специфика подобной группировки такова, что тематические классы могут быть представлены в виде морфолитосистем, объединяющих рельеф земной поверхности и сопряженный с ним геологический субстрат.
НАПИСАТЬ КОММЕНТАРИЙ