Корреляционный анализ

 

Корреляционный анализ

Основоположником теории корреляции считаются английские биометрики Ф. Гальтон (1822–1911) и К. Пирсон (1857–1936). Термин «корреляция» означает соотношение, соответствие. Представление о корреляции как о взаимозависимости случайных переменных величин лежит в основе статистической теории корреляции – изучение зависимости вариации признака от окружающих условий. Одни признаки выступают в роли влияющих (факторных), другие – на которые влияют, результативных. Зависимости между признаками могут быть функциональными и корреляционными. Функциональные связи характеризуются полным соответствием между изменением факторного признака и изменением результативной величины. Каждому значению признака-фактора соответствует определенное значение результативного признака. В корреляционных связях между изменением факторного и результативного признака нет полного соответствия. В сложном взаимодействии находится сам результативный признак. Поэтому результаты корреляционного анализа имеют значение в данной связи, а интерпретация этих результатов в общем виде требует построения системы корреляционных связей. Они характеризуются множеством причин и следствий и с их помощью устанавливается тенденция изменения результативного признака при изменении величины факторного признака. Например, на производительность труда влияют факторы степени совершенствования техники и технологии, уровень механизации и автоматизации труда, специализации производства, текучесть кадров и т. д.

В природе и обществе явления и события протекают по характеру корреляционной связи, когда при изменении величины одного признака существует тенденция изменения другого признака. Корреляционная связь – это частный случай статистической связи. Корреляционный анализ используется при установлении тесноты зависимости между явлениями, процессами, объектами.

Целью исследования часто бывает установление взаимосвязи (корреляции) между признаками. Знание зависимости дает возможность решать кардинальную задачу любого исследования – возможность предвидеть, прогнозировать развитие ситуации при изменении влияющего фактора. С помощью корреляции можно дать лишь формальную оценку взаимосвязей. Поэтому прежде чем приступать к вычислению коэффициентов корреляции между любыми признаками, следует теоретически установить, имеется ли между этими признаками взаимосвязь. Ведь формально статистика может доказать несуществующие связи, например, между высотой здания в городе и урожайностью пшеницы в фермерских хозяйствах.

Связь между явлениями (корреляция) определяется путем постановки опытов, статистического анализа. Корреляцию не следует отождествлять с причинностью. Однако необходимо иметь в виду, что доказательство математической связи должно опираться на реальную зависимость между явлениями. Например, минерализация воды понижается с севера на юг Беларуси, в этом же направлении понижается содержание питательных веществ в почве. Между рассматриваемыми показателями может быть получена положительная достоверная зависимость. Однако степень минерализации воды не определяет оптимальное содержание питательных веществ в почве. Иначе в ландшафтах пустынь плодородие было бы максимальным, так как здесь максимальная минерализация воды (почвенно-грунтовые воды солоноватые), а это противоречит истине. Поэтому проведение подобной связи в ландшафтах пустынь бессмысленно. Лучшая посуточная аренда квартир различного уровня комфорта от хозяев без комиссионных вы сможете найти на сайте piter.stay24.ru. Удобный поиск позволит вам легко быстро найти нужную квартиру под ваши требования, потратив при этом минимум времени.

Любой показатель связи служит приближенной оценкой рассматриваемой зависимости и не является гарантией существования жесткой (функциональной) соподчиненности. Отсутствие жесткой зависимости в природе и обществе способствует саморегуляции процессов, явлений, систем

По направлению связь может быть прямой и обратной; по характеру – функциональной или статистической (корреляционной); по величине – слабой, средней или сильной; по форме – линейной и нелинейной; по количеству коррелируемых признаков – парной и множественной.

Функциональная зависимость характерна для геометрических форм, технических систем, когда каждому значению одного признака соответствует точное значение другого. Это пример взаимосвязи площади прямоугольника и длины его одной из сторон. Такая зависимость полная или исчерпывающая.

Выделяют несколько видов парной корреляционной связи:

·параллельно-соотносительную, или ассоциативную, когда оба признака изменяются сопряжено, частично под действием общих причин и следствий (приуроченность растительности и почв к определенным формам рельефа; развития промышленности и рост населения к сырьевым ресурсам);

·субпричинную, когда один фактор выступает как отдельная причина сопряженного изменения признака (связь биомассы с количеством осадков; рост населения и рождаемости);

·взаимоупреждающую, когда причина и следствие, находясь в устойчивой взаимной связи, последовательно влияют друг на друга (влажность воздуха и осадки).

Если на признак влияет несколько факторов, то приходится оценивать множественную корреляцию. Множественная корреляция служит основой выявления связей между признаками, но требует строгой нормальности и прямолинейности распределения, поэтому использование ее может быть затруднено. С ростом числа переменных объем вычислительных работ увеличивается пропорционально квадрату числа переменных. В этом случае труднее оценивать значимость результатов, так как увеличиваются ошибки коэффициентов корреляции. Практически в таких случаях ограничиваются изучением лишь главных факторов. Однако характер влияния главных факторов на признак более детально и точно исследуют путем факторного анализа.

В практической работе по установлению корреляции между признаками и явлениями необходимо придерживаться следующей последовательности:

·на основании проведенных исследований предварительно определяют, существует ли связь между рассматриваемыми признаками;

·если связь между ними существует, устанавливают ее форму, направление и тесноту, используя график.

В начале составляются сопряженные вариационные ряды, в которых следует определить аргумент х и функцию у:

 

x

10

12

16

18

21

23

25

30

y

2

4

5

7

8

9

9

10

 

По сопряженным вариантам строится график, который помогает установить вид зависимости между аргументом и функцией. От формы корреляционной связи зависит дальнейшая обработка экспериментальных или статистических данных. Линейная зависимость предполагает вычисление коэффициента корреляции r, а нелинейная – корреляционного отношения η (рис. 5.1). Степень рассеяния частот или вариант относительно линии регрессии на графике указывает ориентировочно на тесноту связи: чем меньше рассеяние, тем сильнее связь (рис. 5.2).

Корреляционный анализ решает следующие задачи:

·установление направления и формы связи,

·оценка тесноты связи,

·оценка репрезентативности статистических оценок взаимосвязи,

·  определение величины детерминации (доли взаимовлияния) коррелируемых факторов.

 

 

Рис. 5.1. Форма корреляционной связи:

а – прямая линейная; б – обратная линейная; в – парабалическая; г – гиперболическая

Для оценки связи используют следующие численные критерии (коэффициенты) корреляционной связи:

·коэффициент корреляции (r) при линейной зависимости,

·корреляционное отношение (η) при нелинейной зависимости,

·коэффициенты множественной регрессии,

·ранговые коэффициенты линейной корреляции Пирсона или Кендэла.

 

10 декабря 2012 /
Похожие новости
Операции над статистическими поверхностями
Факторный анализ.Сущность и возможности применения
Ранговая корреляция
Кластерный анализ
Теоретические функции распределения
Комментарии

НАПИСАТЬ КОММЕНТАРИЙ

Ваше Имя:
Ваш E-Mail:
Полужирный Наклонный текст Подчеркнутый текст Зачеркнутый текст | Выравнивание по левому краю По центру Выравнивание по правому краю | Вставка смайликов Выбор цвета | Скрытый текст Вставка цитаты Преобразовать выбранный текст из транслитерации в кириллицу Вставка спойлера
Вопрос:
Столица России?
Ответ:*
Введите код: